Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral.

\(\) \(\int\limits_{\rm{0}}^{\rm{4}} {{\rm{(3}}\sqrt {\rm{t}} {\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{)dt}}} \)

Short Answer

Expert verified

The value of the integral is \(\) \({\rm{18 - 2}}{{\rm{e}}^{\rm{4}}}\)

Step by step solution

01

Square root as a fractional power, general antiderivative.

To rewrite the square root as a fractional power,

\(\int\limits_{\rm{0}}^{\rm{4}} {{\rm{(3}}\sqrt {\rm{t}} {\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{)dt = }}\int\limits_{\rm{0}}^{\rm{4}} {{\rm{3}}{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{1}}$} \!\mathord{\left/

{\vphantom {{\rm{1}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}}}} {\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{)dt}}} \)

To find the general antideriavative, using the indefinite integrals

and \(\int {{{\rm{e}}^{\rm{t}}}{\rm{dt = }}{{\rm{e}}^{\rm{t}}}{\rm{ + C}}} \)

Ignore (just for the moment) the boundaries of integration.

02

Leave out arbitrary constant.

\(\begin{array}{c}\int {{\rm{(3}}{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{1}}$} \!\mathord{\left/

{\vphantom {{\rm{1}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}}}{\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{)dt = }}\int {{\rm{3}}{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{1}}$} \!\mathord{\left/

{\vphantom {{\rm{1}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}}}} {\rm{dt - }}\int {{\rm{2}}{{\rm{e}}^{\rm{t}}}} {\rm{dt = 3}}\frac{{{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{t}}$} \!\mathord{\left/

{\vphantom {{\rm{t}} {{\rm{2 + 1}}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${{\rm{2 + 1}}}$}}}}}}{{{\raise0.7ex\hbox{${\rm{1}}$} \!\mathord{\left/

{\vphantom {{\rm{1}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}{\rm{ + 1}}}}{\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{ + C}}} {\rm{ = 3 \times }}\frac{{{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{3}}$} \!\mathord{\left/

{\vphantom {{\rm{3}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}}}}}{{{\raise0.7ex\hbox{${\rm{3}}$} \!\mathord{\left/

{\vphantom {{\rm{3}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}}}{\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{ + C}}\\{\rm{ = 3 \times }}\frac{{\rm{2}}}{{\rm{3}}}{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{3}}$} \!\mathord{\left/

{\vphantom {{\rm{3}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}}}{\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{ + C}}\\{\rm{ = 2}}{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{3}}$} \!\mathord{\left/

{\vphantom {{\rm{3}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}}}{\rm{ - 2}}{{\rm{e}}^{\rm{t}}}{\rm{ + C}}\\{\rm{ = F(t)}}\end{array}\)

We will leave out the arbitrary constant C, since it cancels out when calculating a definite integral.

03

Assigning final value.

\(\begin{array}{c}\int\limits_{\rm{0}}^{\rm{4}} {{\rm{(3}}{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{1}}$} \!\mathord{\left/

{\vphantom {{\rm{1}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}{\rm{ - }}}}} {\rm{2}}{{\rm{e}}^{\rm{t}}}{\rm{)dt = }}\left( {{\rm{2}}{{\rm{t}}^{{\raise0.7ex\hbox{${\rm{3}}$} \!\mathord{\left/

{\vphantom {{\rm{3}} {\rm{2}}}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{${\rm{2}}$}}}}{\rm{ - 2}}{{\rm{e}}^{\rm{t}}}} \right)_{\rm{0}}^{\rm{4}}{\rm{ = }}\left( {{\rm{2(4}}{{\rm{)}}^{{{\rm{3}} \mathord{\left/

{\vphantom {{\rm{3}} {}}} \right.

\kern-\nulldelimiterspace} {}}{\rm{2}}}}{\rm{ - 2}}{{\rm{e}}^{\rm{4}}}} \right){\rm{ - }}\left( {{\rm{2(0}}{{\rm{)}}^{{{\rm{3}} \mathord{\left/

{\vphantom {{\rm{3}} {}}} \right.

\kern-\nulldelimiterspace} {}}{\rm{2}}}}{\rm{ - 2}}{{\rm{e}}^{\rm{0}}}} \right)\\{\rm{ = }}\left( {{\rm{16 - 2}}{{\rm{e}}^{\rm{4}}}} \right){\rm{ - }}\left( {{\rm{ - 2}}} \right)\\{\rm{ = 18 - 2}}{{\rm{e}}^{\rm{4}}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free