Chapter 5: Q10E (page 306)
Evaluate the indefinite integral.
\(\int {{{(3t + 2)}^{2.4}}} dt\)
Short Answer
The value of \(\int {{{(3t + 2)}^{2.4}}} dt\)is\(\frac{{{{(3t + 2)}^{3.4}}}}{{10.2}} + c\).
Chapter 5: Q10E (page 306)
Evaluate the indefinite integral.
\(\int {{{(3t + 2)}^{2.4}}} dt\)
The value of \(\int {{{(3t + 2)}^{2.4}}} dt\)is\(\frac{{{{(3t + 2)}^{3.4}}}}{{10.2}} + c\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the average value of the function \(g(x) = \cos x\)in the interval \(\left( {0,\frac{\pi }{2}} \right)\)
Find the average value of \({\rm{f}}\)on\(\left( {{\rm{0,8}}} \right)\).
Derivate the function \(g(x) = \int_1^x {\frac{1}{{{t^3} + 1}}} dt\) using the part 1 of the fundamental theorem of calculus.
Evaluate the integrals.
\(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)
Evaluate the indefinite integral\(\int {\sin \pi tdt} \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.