Integrate subtracting the lower from the upper curve, since we want a positive answer. (Subtract a lesser value from a greater value: \({r_1} \ge {r_2}\))
\(V = \int_a^b \pi \left( {r_1^2 - r_2^2} \right)dx{\rm{ }} = 2\pi \int_0^2 {\left( {{{\left( {10 - {x^2}} \right)}^2} - {{\left( {{x^2} + 2} \right)}^2}} \right)} dx\)
\( = 2\pi \int_0^2 {\left( {100 - 20{x^2} + {x^4} - {x^4} - 4{x^2} - 4} \right)} dx\)
\( = 2\pi \int_0^2 {\left( {96 - 24{x^2}} \right)} dx\)
\( = 2 \cdot 24\pi \int_0^2 {\left( {4 - {x^2}} \right)} dx\)
\( = 48\pi \left( {4x - \frac{1}{3}{x^3}} \right)_0^2\)
\( = 48\pi \left( {4(2) - \frac{1}{3}{{(2)}^3} - (0 - 0)} \right)\)
\( = 48\pi \left( {8 - \frac{8}{3}} \right)\)
\( = 48\pi \left( {\frac{{24 - 8}}{3}} \right)\)
\( = 48\pi \left( {\frac{{16}}{3}} \right)\)
\( = 16\pi (16)\)
\( = 256\pi \)