Equation (1) can be rewritten as,
\(\int_C P dx + Qdy = \int_{{x_1}}^{{x_2}} {\int_{{y_1}}^{{y_2}} {\left( {\frac{{\partial Q}}{{\partial x}} - \frac{{\partial P}}{{\partial y}}} \right)} } dydx\) ……. (2)
Substitute the values in equation (2),
\(\begin{aligned}\oint_C {\cos } ydx + {x^2}\sin ydy & = \int\limits_0^5 {\int\limits_0^2 {(2x\sin y + \sin y)dydx} } \\ & = \int\limits_0^5 {\left( { - 2x\cos y - \cos y} \right)} dx\\ & = \int\limits_0^5 {\left( {( - 2xcos(2) - \cos (2)) - ( - 2x\cos (0) - \cos (0))} \right)dx} \end{aligned}\)
Solve the equation further.
\(\begin{aligned}\oint_C {\cos } ydx + {x^2}\sin ydy & = \int\limits_0^5 {\left( {\cos (2)( - 2x - 1) - ( - 2x - 1)} \right)dx} \\ & = (\cos (2) - 1)\int\limits_0^5 {\left( {( - 2x - 1)} \right)dx} \\ & = (cos(2) - 1){\left( {( - {x^2} - x} \right)^5}_0\end{aligned}\)
The above result can be simplified as follows.
\(\begin{aligned}\oint_C {\cos } ydx + {x^2}\sin ydy & = (\cos (2) - 1)(( - 25 - 5))\\ & = - 30(\cos (2) - 1)\\ & = 30 - 30\cos (2)\\ & = 30(1 - \cos (2))\end{aligned}\)
Thus, the value of line integral \(\oint_C {\cos } ydx + {x^2}\sin ydy\) by Green's Theorem is \(30(1 - \cos (2))\).