To determine whether the function is even or odd, use even and odd function definitions.
If a function\(f\)satisfies\(f\left( { - x} \right) = f\left( x \right)\)for every number\(x\)in its domain,
then\(f\)is called an even function.
If a function\(f\)satisfies\(f\left( { - x} \right) = - f\left( x \right)\)for every number\(x\)in its domain,
then\(f\)is called an odd function.
Replace\(x\)with\( - x\), in\(f\left( x \right)\).
\(\begin{aligned}{l}f\left( { - x} \right) = 1 + 3{\left( { - x} \right)^2} - {\left( { - x} \right)^4}\\\;\;\;\;\;\,\,\,\,\, = 1 + 3{x^2} - {x^4}\\\;\;\;\;\;\;\;\; = f\left( x \right)\end{aligned}\)
The function\(f\left( { - x} \right) = f\left( x \right)\)so\(f\)is an even function.
Therefore, the function\(f\left( x \right) = 1 + 3{x^2} - {x^4}\)is an even function.