In this particular problem the x interval is\(\left( {{\rm{0,4}}} \right)\)and
\(\begin{aligned}{l}{\rm{\Delta }}{{\rm{x}}_{{\rm{ij}}}}{\rm{ = }}\frac{{{\rm{4 - 0}}}}{{\rm{2}}}{\rm{ = }}\frac{{\rm{4}}}{{\rm{2}}}\\ \Rightarrow {\rm{\Delta }}{{\rm{x}}_{{\rm{ij}}}}{\rm{ = 2}}\end{aligned}\)
Similarly, say that the y interval is\(\left( {{\rm{0,4}}} \right)\)and
\(\begin{aligned}{l}{\rm{\Delta }}{{\rm{x}}_{{\rm{ij}}}}{\rm{ = }}\frac{{{\rm{4 - 0}}}}{{\rm{2}}}{\rm{ = }}\frac{{\rm{4}}}{{\rm{2}}}\\ \Rightarrow {\rm{\Delta }}{{\rm{x}}_{{\rm{ij}}}}{\rm{ = 2}}\end{aligned}\)
Additionally, \(\begin{aligned}{l}\Delta {{\rm{A}}_{{\rm{ij}}}} = \,\Delta {{\rm{x}}_{{\rm{ij}}}}\Delta {{\rm{y}}_{{\rm{ij}}}}\\ & = \left( 2 \right)\left( 2 \right)\\ & = 4\\ & \Rightarrow \Delta {{\rm{A}}_{{\rm{ij}}}} = 4\end{aligned}\)
This allows us to write the integral as the double Riemann sum.
\(\begin{aligned} \int {\int {{}_R} } + \left( {x,y} \right)dA &= \sum\limits_{i = 1}^2 {\sum\limits_{j = 1}^2 + \left( {xij,yij} \right)4} \\ &= 4\sum\limits_{i = 1}^2 {\sum\limits_{j = 1}^2 + \left( {xij,yij} \right)} \\ &= 4\sum\limits_{i = 1}^2 {\sum\limits_{j = 1}^2 + \left( {xij,yij} \right)} \end{aligned}\)
Choose the same points \( + \left( {{\rm{xij,yij}}} \right)\)
In any manner we wish