Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the curve \(y = \left( {1 + x} \right)/\left( {1 + {x^2}} \right)\) has three inflection points and they lie on the one straight line.

Short Answer

Expert verified

It is proved that the curve \(y = \left( {1 + x} \right)/\left( {1 + {x^2}} \right)\) has three inflection points and they lie on the one straight line.

Step by step solution

01

Given data

The given function is a curve that has three inflection points.

02

Concept of Differentiation

Differentiation is a method of finding the derivative of a function. Differentiation is a process, where we find the instantaneous rate of change in function based on one of its variables.

03

Calculate the value of \({y^\prime }\) and \({y^{\prime \prime }}\)

Find \({y^\prime }\)

\(\begin{aligned}{c}y &= \frac{{1 + x}}{{1 + {x^2}}}\\{y^\prime } &= \frac{{(1)\left( {1 + {x^2}} \right) - (1 + x)(2x)}}{{{{\left( {1 + {x^2}} \right)}^2}}}\\{y^\prime } &= \frac{{1 + {x^2} - 2x - 2{x^2}}}{{{{\left( {1 + {x^2}} \right)}^2}}}\\{y^\prime } &= \frac{{1 - {x^2} - 2x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\end{aligned}\)

Calculate the value of \({y^{\prime \prime }}\):

\(\begin{array}{l}{y^{\prime \prime }} = \frac{{( - 2x - 2){{\left( {1 + {x^2}} \right)}^2} - \left( {1 - {x^2} - 2x} \right)(2)\left( {1 + {x^2}} \right)(2x)}}{{{{\left( {1 + {x^2}} \right)}^4}}}\\{y^{\prime \prime }} = \frac{{\left( {1 + {x^2}} \right)\left( {( - 2x - 2)\left( {1 + {x^2}} \right) - \left( {1 - {x^2} - 2x} \right)(4x)} \right)}}{{{{\left( {1 + {x^2}} \right)}^4}}}\\{y^{\prime \prime }} = \frac{{ - 2x - 2{x^3} - 2 - 2{x^2} - 4x + 4{x^3} + 8{x^2}}}{{{{\left( {1 + {x^2}} \right)}^3}}}\\{y^{\prime \prime }} = \frac{{2{x^3} + 6{x^2} - 6x - 2}}{{{{\left( {1 + {x^2}} \right)}^3}}}\end{array}\)

Similarly, calculate further:

\(\begin{array}{l}{y^{\prime \prime }} = \frac{{2\left( {{x^3} + 3{x^2} - 3x - 1} \right)}}{{{{\left( {1 + {x^2}} \right)}^3}}}\\{y^{\prime \prime }} = \frac{{2(x - 1)\left( {{x^2} + 4x + 1} \right)}}{{{{\left( {1 + {x^2}} \right)}^3}}}\end{array}\)

04

Simplify the expression

Simplify the expression: \({y^{\prime \prime }} = 0\) when \(x = 1\) and

\(\begin{aligned}{c}x &= \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\\x &= \frac{{ - (4) \pm \sqrt {{{(4)}^2} - 4(1)(1)} }}{{2(1)}}\\x &= \frac{{ - 4 \pm \sqrt {12} }}{2}\end{aligned}\)

Similarly, calculate further:

\(\begin{array}{c}x = \frac{{ - 4 \pm \sqrt {4 \cdot 3} }}{2}\\x = \frac{{ - 4 \pm 2\sqrt 3 }}{2}\\x = - 2 \pm \sqrt 3 \approx - 3.73, - 0.268\end{array}\)

Confirm that they're inflection points by testing the intervals between the zeros.

\(\begin{aligned}{c}( - \infty , - 3.73):{y^{\prime \prime }}( - 4) &\approx - 0.0002\\( - 3.73, - 0.268):{y^{\prime \prime }}( - 1) &= 1\\\left( { - 0.268,1} \right):{y^{\prime \prime }}(0) &= - 2\\(1,\infty ):{y^{\prime \prime }}(2) &= 0.208\end{aligned}\)

Adjacent intervals have different signs, so they are inflection points.

05

Calculate the value of \(y\)

Find the \(y\)- coordinates of the inflection point:

A:

\(\begin{array}{c}y( - 2 - \sqrt 3 ) = \frac{{1 + ( - 2 - \sqrt 3 )}}{{1 + {{( - 2 - \sqrt 3 )}^2}}}\\y( - 2 - \sqrt 3 ) = \frac{{ - 1 - \sqrt 3 }}{{8 + 4\sqrt 3 }} \cdot \frac{{8 - 4\sqrt 3 }}{{8 - 4\sqrt 3 }}\\y( - 2 - \sqrt 3 ) = \frac{{ - 8 - 4\sqrt 3 + 12}}{{64 - 48}}\\y( - 2 - \sqrt 3 ) = \frac{{4 - 4\sqrt 3 }}{{16}}\\y( - 2 - \sqrt 3 ) = \frac{{1 - \sqrt 3 }}{4}\end{array}\)

B:

\(\begin{array}{c}y( - 2 + \sqrt 3 ) = \frac{{1 + ( - 2 + \sqrt 3 )}}{{1 + {{( - 2 + \sqrt 3 )}^2}}}\\y( - 2 + \sqrt 3 ) = \frac{{ - 1 + \sqrt 3 }}{{8 - 4\sqrt 3 }} \cdot \frac{{8 + 4\sqrt 3 }}{{8 + 4\sqrt 3 }}\\y( - 2 + \sqrt 3 ) = \frac{{ - 8 + 4\sqrt 3 + 12}}{{64 - 48}}\\y( - 2 + \sqrt 3 ) = \frac{{4 + 4\sqrt 3 }}{{16}}\\y( - 2 + \sqrt 3 ) = \frac{{1 + \sqrt 3 }}{4}\end{array}\)

C:

\(\begin{array}{c}y(1) = \frac{{1 + (1)}}{{1 + {{(1)}^2}}}\\y(1) = 1\end{array}\)

06

Calculate the slope and sketch the graph

Find the slope from \(A\) to \(B\)

\(\begin{array}{c}\frac{{\frac{{1 + \sqrt 3 }}{4} - \frac{{1 - \sqrt 3 }}{4}}}{{ - 2 + \sqrt 3 - ( - 2 - \sqrt 3 )}} = \frac{{\frac{{2\sqrt 3 }}{4}}}{{2\sqrt 3 }}\\\frac{{\frac{{1 + \sqrt 3 }}{4} - \frac{{1 - \sqrt 3 }}{4}}}{{ - 2 + \sqrt 3 - ( - 2 - \sqrt 3 )}} = \frac{1}{4}\end{array}\)

Find the slope from \(B\) to \(C\)

\(\begin{array}{l}\frac{{\frac{{1 + \sqrt 3 }}{4} - 1}}{{ - 2 + \sqrt 3 - 1}} = \frac{{\frac{{ - 3 + \sqrt 3 }}{4}}}{{ - 3 + \sqrt 3 }}\\\frac{{\frac{{1 + \sqrt 3 }}{4} - 1}}{{ - 2 + \sqrt 3 - 1}} = \frac{1}{4}\end{array}\)

The slopes are equal, and since we used a common point for both slopes, the 3 points are on the same line ("collinear").

It is proved that the curve \(y = \left( {1 + x} \right)/\left( {1 + {x^2}} \right)\) has three inflection points and they lie on the one straight line.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If the recommended adult dosage for a drug is\({\bf{D}}\left( {{\bf{in}}\;{\bf{mg}}} \right)\), then to determine the appropriate dosage\({\bf{c}}\)for a child of age\({\bf{a}}\), pharmacists use the equation\({\bf{c = 0}}{\bf{.0417D(a + 1)}}\). Suppose the dosage for an adult is 200 mg.

(a) Find the slope of the graph of\({\bf{c}}\). What does it represent?

(b) What is the dosage for a newborn?

The graph of\({\bf{x = f}}\left( {\bf{x}} \right)\)is given. Match each equation with its graph and give reasons for your choices.

(a)\({\bf{y = f}}\left( {{\bf{x - 4}}} \right)\)

(b)\({\bf{y = f}}\left( {\bf{x}} \right){\bf{ + 3}}\)

(c)\({\bf{y = }}\frac{{\bf{1}}}{{\bf{3}}}{\bf{f}}\left( {\bf{x}} \right)\)

(d)\({\bf{y = - f}}\left( {{\bf{x + 4}}} \right)\)

(e)\({\bf{y = 2f}}\left( {{\bf{x + 6}}} \right)\)

Express the function in the form \({\bf{f}} \circ {\bf{g}}\)

\({\bf{F}}\left( {\bf{x}} \right){\bf{ = }}{\left( {{\bf{2x + }}{{\bf{x}}^{\bf{2}}}} \right)^{\bf{4}}}\)

Find

(a) \({\bf{f + g}}\)

(b) \({\bf{f}} - {\bf{g}}\)

(c) \({\bf{fg}}\)

(d) \({\bf{f}}/{\bf{g}}\)

and state their domains.

38. \({\bf{f}}\left( x \right) = \sqrt {3 - x} \) \(g\left( x \right) = \sqrt {{x^2} - 1} \)

Explain how each graph is obtained from the graph of\({\bf{y = f}}\left( {\bf{x}} \right)\).

(a)\({\bf{y = f}}\left( {\bf{x}} \right){\bf{ + 8}}\)

(b)\({\bf{y = f}}\left( {{\bf{x + 8}}} \right)\)\(\begin{array}{l}{\bf{y = f}}\left( {{\bf{x + 8}}} \right)\\{\bf{y = 8f}}\left( {\bf{x}} \right)\\{\bf{y = f}}\left( {{\bf{8x}}} \right)\\{\bf{y = - f}}\left( {\bf{x}} \right){\bf{ - 1}}\\{\bf{y = 8f}}\left( {\frac{{\bf{1}}}{{\bf{8}}}{\bf{x}}} \right)\\\end{array}\)

(c)\({\bf{y = 8f}}\left( {\bf{x}} \right)\)

(d)\({\bf{y = f}}\left( {{\bf{8x}}} \right)\)\(\)

(e)\({\bf{y = - f}}\left( {\bf{x}} \right){\bf{ - 1}}\)

(f)\({\bf{y = 8f}}\left( {\frac{{\bf{1}}}{{\bf{8}}}{\bf{x}}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free