Chapter 1: Q53RE (page 1)
(a) Approximate f by a Taylor polynomial with degree n at the number a.
(b) Graph f and \({{\rm{T}}_{\rm{n}}}\)on a common screen.
(c) Use Taylor's Formula to estimate the accuracy of the approximation \({\rm{f(x)}} \approx {{\rm{T}}_{\rm{n}}}{\rm{(x)}}\) when x lies in the given interval.
(d) Check your result in part (c) by graphing \(\left| {{{\rm{R}}_{\rm{n}}}{\rm{(x)}}} \right|{\rm{.}}\)
Short Answer
a. The required answer is \({\rm{1 + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{(x - 1) - }}\frac{{\rm{1}}}{{\rm{8}}}{{\rm{(x - 1)}}^{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{16}}}}{{\rm{(x - 1)}}^{\rm{3}}}\).
b. The graph is,
c. The accuracy of the approximation is \({\rm{0}}{\rm{.000006}}\).
d. The graph is,