To convert from rectangular to spherical coordinates, use this equation. Now we must determine the provided point's spherical coordinates. Here
\(\begin{array}{c}{\rm{x = 1}}\\{\rm{y = 0}}\\{\rm{z = }}\sqrt {\rm{3}} \end{array}\)
\(\begin{array}{c}{{\rm{\rho }}^{\rm{2}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}\\{\rm{ = }}{{\rm{1}}^{\rm{2}}}{\rm{ + }}{{\rm{0}}^{\rm{2}}}{\rm{ + (}}\sqrt {\rm{3}} {{\rm{)}}^{\rm{2}}}\\{\rm{ = 1 + 3}}\\{\rm{ = 4}}\\{\rm{\rho = 2}}{\rm{. }}\\{\rm{cos}}\phi {\rm{ = }}\frac{{\rm{z}}}{{\rm{\rho }}}\\{\rm{ = }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}\\\phi {\rm{ = }}\frac{{\rm{\pi }}}{{\rm{6}}}\\{\rm{cos\theta = }}\frac{{\rm{x}}}{{{\rm{\rho sin}}\phi }}\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{2 \times sin}}\frac{{\rm{\pi }}}{{\rm{6}}}}}\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{2 \times }}\frac{{\rm{1}}}{{\rm{2}}}}}\\{\rm{ = 1}}\\{\rm{\theta = 0}}{\rm{.}}\end{array}\)
\(\begin{array}{c}{{\rm{\rho }}^{\rm{2}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}\\{\rm{ = }}{{\rm{1}}^{\rm{2}}}{\rm{ + }}{{\rm{0}}^{\rm{2}}}{\rm{ + (}}\sqrt {\rm{3}} {{\rm{)}}^{\rm{2}}}\\{\rm{ = 1 + 3 = 4}}\\{\rm{\rho = 2}}{\rm{. }}\\{\rm{cos}}\phi {\rm{ = }}\frac{{\rm{z}}}{{\rm{\rho }}}\\{\rm{ = }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}\phi \\{\rm{ = }}\frac{{\rm{\pi }}}{{\rm{6}}}\\{\rm{cos\theta = }}\frac{{\rm{x}}}{{{\rm{\rho sin}}\phi }}\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{2 \times sin}}\frac{{\rm{\pi }}}{{\rm{6}}}}}\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{2 \times }}\frac{{\rm{1}}}{{\rm{2}}}}}{\rm{ = 1}}\\{\rm{\theta = 0}}{\rm{.}}\end{array}\)
\(\left( {{\rm{4,}}\frac{{{\rm{11\pi }}}}{{\rm{6}}}{\rm{,}}\frac{{\rm{\pi }}}{{\rm{6}}}} \right)\)
The supplied point's spherical coordinates are\(\left( {{\rm{2,0,}}\frac{{\rm{\pi }}}{{\rm{6}}}} \right)\).