![]()

Let quadratic function is
\(g\left( x \right) = a{x^2} + bx + c\)
From the graph of the function, we know
\(x = 0,\,\,g\left( 0 \right) = 1\)
Therefore,
\(\begin{array}{c}g\left( 0 \right) = a{\left( 0 \right)^2} + b\left( 0 \right) + c\\1 = c\end{array}\)
Substituting this value into quadratic function
\(g\left( x \right) = a{x^2} + bx + 1\)
From graph we know
\(x = - 2,\,\,g\left( { - 2} \right) = 2\)
Substituting the values
\(\begin{array}{c}g\left( { - 2} \right) = a{\left( { - 2} \right)^2} + b\left( { - 2} \right) + 1\\2 = 4a - 2b + 1\\4a - 2b = 1\,\,\,\,\,\,\,\,......\left( 1 \right)\end{array}\)
From graph we know
\(x = 1,\,\,g\left( 1 \right) = - 2.5\)
Substituting the values
\(\begin{array}{c}g\left( 1 \right) = a{\left( 1 \right)^2} + b\left( 1 \right) + 1\\ - 2.5 = a + b + 1\\a + b = - 3.5\\a = - 3.5 - b\end{array}\)
Substituting the value ofa into the equation (i) and solving forb
\(\begin{array}{c}4\left( { - 3.5 - b} \right) - 2b = 1\\ - 14 - 4b - 2b = 1\\b = - 2.5\end{array}\)
Then
\(\begin{array}{l}a = - 3.5 - \left( { - 2.5} \right)\\a = - 1\end{array}\)
Substituting the values ofa andb in the function
Hence the expression of the quadratic function is \(g\left( x \right) = - {x^2} - 2.5x + 1\)