In general, If \({a_n}\)and \({a_{n + 1}}\) are the lengths of the \({n^{th}}\) and \({\left( {n + 1} \right)^{th}}\) perpendiculars, we have
\(\begin{aligned}{l}\sin \left( \theta \right) = \frac{{{a_{n + 1}}}}{{{a_n}}}\\{a_{n + 1}} = {a_n}\sin (\theta )\end{aligned}\)
From the above expression it is show that each perpendicular length has an increasing factor of \(\sin \left( \theta \right)\).
Thus, the geometric series will be in the form of
\(\begin{aligned}\left| {CD} \right| + \left| {DE} \right| + \left| {EF} \right| + .... = b\sin \left( \theta \right) + b{\sin ^2}\left( \theta \right) + b{\sin ^3}\left( \theta \right) + .....\\ \Rightarrow b\left( {\sin \theta + {{\sin }^2}\theta + {{\sin }^3}\theta + ....} \right)\\ = \sum\limits_{n = 1}^\infty {b.{{\sin }^{n - 1}}\left( \theta \right)} \end{aligned}\)
Here, the geometric series formula is\({s_\infty } = \frac{a}{{1 - r}}\)where\(a = b\)and\(r = \sin \theta \)
Substitute the values into the series formula, we get\(\frac{b}{{1 - \sin \theta }}\)
Therefore, the total length of all the perpendiculars is given by the geometric series\(\frac{b}{{1 - \sin \theta }}\).