The average value of the function\({\rm{f(x) = tsin}}\left( {{{\rm{t}}^{\rm{2}}}} \right)\)on the interval\({\rm{(0,10)}}\)is
\(\begin{array}{*{20}{c}}{{{\rm{f}}_{{\rm{avg}}}}}&{{\rm{ = }}\frac{{\rm{1}}}{{{\rm{10 - 0}}}}\int_{\rm{0}}^{{\rm{10}}} {\rm{t}} {\rm{sin}}\left( {{{\rm{t}}^{\rm{2}}}} \right){\rm{dt}}}\\{{{\rm{f}}_{{\rm{avg}}}}}&{{\rm{ = }}\frac{{\rm{1}}}{{{\rm{20}}}}\int_{\rm{0}}^{{\rm{10}}} {{\rm{sin}}} \left( {{{\rm{t}}^{\rm{2}}}} \right){\rm{(2tdt)}}}\end{array}\)
By substituting\({{\rm{t}}^{\rm{2}}}{\rm{ = u}}\)and\({\rm{2 t d t = d u}}\),
Therefore, the average of the function is \({\rm{0}}{\rm{.0069}}{\rm{.}}\)