Known that\({\rm{f(x) = ln(4 - x)}}\).
Here to find the series for \({{\rm{f}}^{{\rm{ - 1}}}}\)it will help to get the series.
\(\begin{array}{c}{{\rm{f}}'}{\rm{(x) = }}\frac{{{\rm{ - 1}}}}{{{\rm{4 - x}}}}\\{{\rm{f}}'}{\rm{(x) = - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ \times }}\frac{{\rm{1}}}{{{\rm{1 - }}\frac{{\rm{x}}}{{\rm{4}}}}}\\{{\rm{f}}'}{\rm{(x) = - }}\frac{{\rm{1}}}{{\rm{4}}}\sum\limits_{{\rm{n = 0}}}\infty {{{\left( {\frac{{\rm{x}}}{{\rm{4}}}} \right)}{\rm{n}}}} \end{array}\)
Now integrate,
\(\int {\left( {{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\sum\limits_{{\rm{n = 0}}}^\infty {{{\left( {\frac{{\rm{x}}}{{\rm{4}}}} \right)}^{\rm{n}}}} } \right)} {\rm{dx = C - }}\frac{{\rm{1}}}{{\rm{4}}}\sum\limits_{{\rm{n = 0}}}^\infty {\frac{{{{\rm{x}}^{{\rm{n + 1}}}}}}{{{\rm{(n + 1)}}{{\rm{4}}^{\rm{n}}}}}} \)
Here \({\rm{x = 0}}\)means to find \({\rm{C}}\).
\(\begin{array}{c}{\rm{ln(4 - x) = C - }}\frac{{\rm{1}}}{{\rm{4}}}\sum\limits_{{\rm{n = 0}}}^\infty {\frac{{{{\rm{x}}^{{\rm{n + 1}}}}}}{{{\rm{(n + 1)}}{{\rm{4}}^{\rm{n}}}}}} \\{\rm{ln4 = C}}\\{\rm{ln(4 - x) = ln4 - }}\frac{{\rm{1}}}{{\rm{4}}}\sum\limits_{{\rm{n = 0}}}^\infty {\frac{{{{\rm{x}}^{{\rm{n + 1}}}}}}{{{\rm{(n + 1)}}{{\rm{4}}^{\rm{n}}}}}} \\{\rm{ = ln4 - }}\sum\limits_{{\rm{n = 0}}}^\infty {\frac{{{{\rm{x}}^{{\rm{n + 1}}}}}}{{{\rm{(n + 1)}}{{\rm{4}}^{{\rm{n + 1}}}}}}} \\{\rm{ln(4 - x) = ln4 - }}\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{{{\rm{x}}^{\rm{n}}}}}{{{\rm{n}}{{\rm{4}}^{\rm{n}}}}}} \end{array}\)