Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the functions (a)\(f \circ g\), (b) \(g \circ f\),(c)\(f \circ f\), and (d) \(g \circ g\)

and their domains.

\(f\left( x \right) = \frac{x}{{1 + x}}\) \(g\left( x \right) = sin2x\)

Short Answer

Expert verified

(a) The composition \(f \circ g\) with \(f\left( x \right) = \frac{x}{{1 + x}}\) and \(g\left( x \right) = sin2x\) is \(\frac{{sin2x}}{{1 + sin2x}}\) and has domain\(\left( { - \infty ,\infty } \right)\;{\rm{where}}\;x \ne \frac{{n\pi }}{4}\;\;,\;\;n = ... - 11, - 9, - 3, - 1,5,7,13...\).

(b) The composition \(g \circ f\) with \(f\left( x \right) = \frac{x}{{1 + x}}\) and \(g\left( x \right) = sin2x\) is \(sin\left( {\frac{{2x}}{{1 + x}}} \right)\) and has domain\(\left( { - \infty , - 1} \right) \cup \left( { - 1,\infty } \right)\).

(c) The composition \(f \circ f\) with \(f\left( x \right) = \frac{x}{{1 + x}}\) is \(\frac{x}{{1 + 2x}}\) and has domain\(\left( { - \infty , - \frac{1}{2}} \right) \cup \left( { - \frac{1}{2},\infty } \right)\)

(d) The composition \(g \circ g\) with \(g\left( x \right) = sin2x\) is \(sin2\left( {sin2x} \right)\) and has domain\(\left( {{\bf{ - }}\infty {\bf{,}}\infty } \right)\).

Step by step solution

01

Given data

The given functions are;

\(f\left( x \right) = \frac{x}{{1 + x}}\)and \(g\left( x \right) = \sin 2x\)

02

Step 2:

A composite function is formed when one function is substituted for another function.For two functions\(f\left( x \right)\)and\(g\left( x \right)\), their composition is defined as;

\({\bf{f}} \circ {\bf{g = f}}\left( {{\bf{g}}\left( {\bf{x}} \right)} \right)\)

03

The composition \(f \circ g\) 

Evaluate\({\bf{f}} \circ {\bf{g}}\)

\(\begin{array}{c}f \circ g = f\left( {g\left( x \right)} \right)\\ = f\left( {\sin 2x} \right)\\ = \frac{{\sin 2x}}{{1 + \sin 2x}}\end{array}\)

The function is undefined when \(\sin 2x = - 1\) i.e.

\(x = ..., - \frac{{11\pi }}{4}, - \frac{{9\pi }}{4}, - \frac{{3\pi }}{4}, - \frac{\pi }{4},\frac{{5\pi }}{4},\frac{{7\pi }}{4},\frac{{13\pi }}{4},\frac{{15\pi }}{4},...\)

Hence, the composition \(f \circ g\) is \(\frac{{\sin 2x}}{{1 + \sin 2x}}\) with the domain\(\left( { - \infty ,\infty } \right)\;\;\;\;\;x \ne \frac{{n\pi }}{4}\;\;,\;\;n = ... - 11, - 9, - 3, - 1,5,7,13...\).

04

The composition \(g \circ f\) 

From equation (1),

\(\begin{array}{c}g \circ f = g\left( {\frac{x}{{1 + x}}} \right)\\ = \sin \left( {\frac{{2x}}{{1 + x}}} \right)\end{array}\)

This function is undefined when\(x = - 1\).

Hence, the composition \(g \circ f\) is \(\sin \left( {\frac{{2x}}{{1 + x}}} \right)\) with the domain\(\left( { - \infty , - 1} \right) \cup \left( { - 1,\infty } \right)\).

05

The composition \(f \circ f\) 

From equation (1),

\(\begin{array}{c}f \circ f = f\left( {\frac{x}{{1 + x}}} \right)\\ = \frac{{\frac{x}{{1 + x}}}}{{1 + \frac{x}{{1 + x}}}}\\ = \frac{x}{{1 + 2x}}\end{array}\)

This function is undefined when\(2x = - 1\)that is \(x = - \frac{1}{2}\).

Hence, the composition \(f \circ f\) is \(\frac{x}{{1 + 2x}}\) with the domain\(\left( { - \infty , - \frac{1}{2}} \right) \cup \left( { - \frac{1}{2},\infty } \right)\).

06

The composition \(g \circ g\) 

Now evaluate\({\rm{g}} \circ {\rm{g}}\)

\(\begin{array}{c}g \circ g = g\left( {g\left( x \right)} \right)\\ = g\left( {\sin 2x} \right)\\ = \sin 2\left( {\sin 2x} \right)\end{array}\)

This function is well defined everywhere. Thus, the domain is\(\left( { - \infty ,\infty } \right)\).

Hence, the composition \(g \circ g\) is \(\sin 2\left( {\sin 2x} \right)\) with the domain\(\left( { - \infty ,\infty } \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free