Chapter 1: Q44E (page 23)
Find the functions (a)\(f \circ g\), (b) \(g \circ f\),(c)\(f \circ f\), and (d) \(g \circ g\)
and their domains.
\(f\left( x \right) = \frac{x}{{1 + x}}\) \(g\left( x \right) = sin2x\)
Short Answer
(a) The composition \(f \circ g\) with \(f\left( x \right) = \frac{x}{{1 + x}}\) and \(g\left( x \right) = sin2x\) is \(\frac{{sin2x}}{{1 + sin2x}}\) and has domain\(\left( { - \infty ,\infty } \right)\;{\rm{where}}\;x \ne \frac{{n\pi }}{4}\;\;,\;\;n = ... - 11, - 9, - 3, - 1,5,7,13...\).
(b) The composition \(g \circ f\) with \(f\left( x \right) = \frac{x}{{1 + x}}\) and \(g\left( x \right) = sin2x\) is \(sin\left( {\frac{{2x}}{{1 + x}}} \right)\) and has domain\(\left( { - \infty , - 1} \right) \cup \left( { - 1,\infty } \right)\).
(c) The composition \(f \circ f\) with \(f\left( x \right) = \frac{x}{{1 + x}}\) is \(\frac{x}{{1 + 2x}}\) and has domain\(\left( { - \infty , - \frac{1}{2}} \right) \cup \left( { - \frac{1}{2},\infty } \right)\)
(d) The composition \(g \circ g\) with \(g\left( x \right) = sin2x\) is \(sin2\left( {sin2x} \right)\) and has domain\(\left( {{\bf{ - }}\infty {\bf{,}}\infty } \right)\).