Substitute the initial condition \({\rm{y(0) = 0}}{\rm{.27}}\)in equation (1),
\(\begin{aligned} - \frac{1}{{100}}\ln (9 - 100(0.27)) &= \frac{1}{{9000}}(0) + C\\ - \frac{1}{{100}}\ln (18) &= C\end{aligned}\)
Substitute\(c\)value in equation (1),
\(\begin{aligned} - \frac{1}{{100}}\ln (9 - 100y) &= \frac{1}{{9000}}t - \frac{1}{{100}}\ln (18)\\ - \ln (9 - 100y) &= \frac{t}{{90}} - \ln (18)\\In(9 - 100y) &= - \frac{t}{{90}} + \ln (18)\end{aligned}\)
Take exponentials on both sides,
\(\ln (9 - 100y) = - \frac{t}{{90}} + \ln (18)\)
\({\rm{9 - 100 y}}\)is negative. So that it can be written as follows,
\(\begin{aligned}(100y - 9) &= {e^{ - \frac{t}{{90}} + \ln (18)}}\\(100y - 9) &= {e^{ - \frac{t}{{90}}}}18\\100y &= {e^{ - \frac{t}{{90}}}}18 + 9\\y &= \frac{{{e^{ - \frac{t}{{90}}}}18 + 9}}{{100}}\end{aligned}\)
Therefore, the carbon dioxide level after \(t\) minutes is \(y = \frac{{{e^{ - \frac{s}{{90}}}}18 + 9}}{{100}}\).
Consider the percentage of carbon dioxide level,
\(p(t) = \frac{y}{{180}}(100)\) …… (2)
Substitute\(y\)value in equation (2),
\(\begin{aligned}p(t) &= \frac{{\frac{{{e^{ - \frac{t}{{90}}}}18 + 9}}{{100}}}}{{180}}(100)\\ &= \frac{{{e^{ - \frac{t}{{90}}}}0.18 + 0.09}}{{180}}(100)\\ &= \left( {0.0005 + 0.001{e^{\frac{{ - t}}{{90}}}}} \right)(100)\\ &= 0.05 + 0.01{e^{\frac{{ - t}}{{90}}}}\end{aligned}\)
Obtain the percentage of the long run as follows,
Take limit on both sides,
\(\mathop {\lim }\limits_{t \to \infty } p(t) = 0.05 + 0.1{e^{\frac{{ - \pi }}{{90}}}}\)
\( = 0.05 + 0.1(0)\;\;\;\left( {{e^{ - \infty }} = 0} \right)\)
\( = 0.05\)
Thus, the percentage of carbon dioxide level goes to \(0.05\)when there is a long run, that means \(0.05\% \).