Chapter 1: Q43E (page 23)
Find the functions (a)\({\bf{f}} \circ {\bf{g}}\), (b)\({\bf{g}} \circ {\bf{f}}\), (c)\({\bf{f}} \circ {\bf{f}}\), and (d) \({\bf{g}} \circ {\bf{g}}\) and their domains.
\({\bf{f}}\left( {\bf{x}} \right){\bf{ = x + }}\frac{{\bf{1}}}{{\bf{x}}}\) \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}\frac{{{\bf{x + 1}}}}{{{\bf{x + 2}}}}\)
Short Answer
(a) The composition \(f \circ g\) is \(\frac{{x + 1}}{{x + 2}} + \frac{{x + 2}}{{x + 1}}\) with the domain\(x \in \mathbb{R} - \left\{ { - 1, - 2} \right\}\).
(b) The composition \(g \circ f\) is \(\frac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}}}\) with the domain\(\left( { - \infty , - 1} \right) \cup \left( { - 1,\infty } \right)\).
(c) The composition \(f \circ f\) is \(\frac{{{{\left( {{x^2} + 1} \right)}^2} + {x^2}}}{{x\left( {{x^2} + 1} \right)}}\) with the domain\(\left( { - \infty ,0} \right) \cup \left( {0,\infty } \right)\).
(d) The composition \(g \circ g\) is \(\frac{{2x + 3}}{{3x + 5}}\) with the domain\(\left( { - \infty , - \frac{5}{3}} \right) \cup \left( { - \frac{5}{3},\infty } \right)\).