write in summation form, and look for some patterns. Every two terms above have the same pair of coefficients, but their signs are reversed. merge the two into a single summation term. The factorial part and exponents count along with even numbers for the left term and odd numbers for the right term.
We can represent this as \({\rm{(2n) }}\) and \({\rm{(2n + 1)}}\).
\(\begin{array}{c}{\rm{sinx = }}_{{\rm{n = 0}}}^\infty {{\rm{( - 1)}}^{\rm{n}}}\frac{{\rm{1}}}{{{\rm{2(2n)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n}}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{{\rm{2(2n + 1)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n + 1}}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}_{{\rm{n = 0}}}^\infty {{\rm{( - 1)}}^{\rm{n}}}\frac{{\rm{1}}}{{{\rm{(2n)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n}}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{{\rm{(2n + 1)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n + 1}}}}.\end{array}\)
Therefore, The Taylor series is \(\frac{{\rm{1}}}{{\rm{2}}}_{{\rm{n = 0}}}^\infty {{\rm{( - 1)}}^{\rm{n}}}\frac{{\rm{1}}}{{{\rm{(2n)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n}}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{{\rm{(2n + 1)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n + 1}}}}\).