Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the Taylor series of \(f(x) = \sin x\)at \({\rm{a = \pi /6}}\).

Short Answer

Expert verified

The Taylor series is \(\frac{{\rm{1}}}{{\rm{2}}}_{{\rm{n = 0}}}^\infty {{\rm{( - 1)}}^{\rm{n}}}\frac{{\rm{1}}}{{{\rm{(2n)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n}}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{{\rm{(2n + 1)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n + 1}}}}\).

Step by step solution

01

Step 1:Calculate the derivatives,

\({\rm{f(x) = sinx,}}\;\;\;{\rm{a = \pi /6}}\)

Calculate some derivatives\({{\rm{f}}^{{\rm{(n)}}}}{\rm{(x)}}\) and \({{\rm{f}}^{{\rm{(n)}}}}{\rm{(a)}}\)

The next derivative is \({\rm{sinx}}\).so the same pattern repeats from here. Now assemble the Taylor series.

02

Use the Taylor series

\[\begin{array}{c}{\rm{f(x) = f(a) + }}\frac{{{{\rm{f}}^{\rm{'}}}{\rm{(a)}}}}{{{\rm{1!}}}}{\rm{(x - a) + }}\frac{{{{\rm{f}}^{\rm{}}}{\rm{(a)}}}}{{{\rm{2!}}}}{{\rm{(x - a)}}^{\rm{2}}}{\rm{ + }}\frac{{{{\rm{f}}^{{\rm{'}}}}{\rm{(a)}}}}{{{\rm{3!}}}}{{\rm{(x - a)}}^{\rm{3}}}{\rm{ + }} \cdots \cdots \\{\rm{sinx = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}{\rm{x - }}\frac{{\rm{\pi }}}{{\rm{6}}}\\{\rm{ - }}\frac{{\rm{1}}}{{{\rm{2 \times 2!}}}}{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^2}{\rm{ - }}\frac{{\sqrt {\rm{3}} }}{{{\rm{2 \times 3!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^3}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2 \times 4!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^4}\;{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{{\rm{2 \times 5!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^5}\;\;\;{\rm{ + }} \cdots \cdots \end{array}\]

03

Step 3:In summation form

write in summation form, and look for some patterns. Every two terms above have the same pair of coefficients, but their signs are reversed. merge the two into a single summation term. The factorial part and exponents count along with even numbers for the left term and odd numbers for the right term.

We can represent this as \({\rm{(2n) }}\) and \({\rm{(2n + 1)}}\).

\(\begin{array}{c}{\rm{sinx = }}_{{\rm{n = 0}}}^\infty {{\rm{( - 1)}}^{\rm{n}}}\frac{{\rm{1}}}{{{\rm{2(2n)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n}}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{{\rm{2(2n + 1)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n + 1}}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}_{{\rm{n = 0}}}^\infty {{\rm{( - 1)}}^{\rm{n}}}\frac{{\rm{1}}}{{{\rm{(2n)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n}}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{{\rm{(2n + 1)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n + 1}}}}.\end{array}\)

Therefore, The Taylor series is \(\frac{{\rm{1}}}{{\rm{2}}}_{{\rm{n = 0}}}^\infty {{\rm{( - 1)}}^{\rm{n}}}\frac{{\rm{1}}}{{{\rm{(2n)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n}}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{{\rm{(2n + 1)!}}}}\;{\rm{x - }}{\frac{{\rm{\pi }}}{{\rm{6}}}^{{\rm{2n + 1}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a certain country, income tax is assessed as follows. There is no tax on income up to \(10,000. Any income over \)10,000 is taxed at a rate of 10%, up to an income of \(20,000. Any income over \)20,000 is taxed at 15%.

(a) Sketch the graph of the tax rate as a function of the income.

(b) How much tax is assessed on an income of \(14,000? On \)26,000?

(c) Sketch the graph of the total assessed tax as a function of the income.

Find the functions (a)\(f \circ g\), (b) \(g \circ f\),(c)\(f \circ f\), and (d) \(g \circ g\)

and their domains.

\(f\left( x \right) = \frac{x}{{1 + x}}\) \(g\left( x \right) = sin2x\)

Express the function in the form \({\bf{f}} \circ {\bf{g}}\)

\({\bf{F}}\left( {\bf{x}} \right){\bf{ = co}}{{\bf{s}}^{\bf{2}}}{\bf{x}}\)

The monthly cost of driving a car depends on the number of miles driven. Lynn found that in May it cost her \(380 to drive 480 mi and in June it cost her \)460 to drive 800 mi.

(a) Express the monthly cost\({\bf{C}}\)as a function of the distance driven\(\)assuming that a linear relationship gives a suitable model.

(b) Use part (a) to predict the cost of driving 1500 miles per month.

(c) Draw the graph of the linear function. What does the slope represent?

(d) What does the y-intercept represent?

(e) Why does a linear function give a suitable model in this situation?

Find the functions (a) \({\bf{f}} \circ {\bf{g}}\) ,(b) \({\bf{g}} \circ {\bf{f}}\) ,(c) \({\bf{f}} \circ {\bf{f}}\) and (d) \({\bf{g}} \circ {\bf{g}}\) and their domains.

\({\bf{f}}\left( {\bf{x}} \right){\bf{ = x - 2}}\) \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ + 3x + 4}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free