Chapter 1: Q41E (page 23)
Find the functions (a)\({\bf{f}} \circ {\bf{g}}\), (b)\({\bf{g}} \circ {\bf{f}}\), (c)\({\bf{f}} \circ {\bf{f}}\), (d) \({\bf{g}} \circ {\bf{g}}\) and their domains.
\({\bf{f}}\left( {\bf{x}} \right){\bf{ = 1 - 3x}}\) \({\bf{g}}\left( {\bf{x}} \right){\bf{ = cosx}}\)
Short Answer
(a) The composition \({\bf{f}} \circ {\bf{g}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = 1 - 3x}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = cosx}}\) is \({\bf{1 - 3cosx}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(b) The composition \({\bf{g}} \circ {\bf{f}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = 1 - 3x}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = cosx}}\) is \({\bf{cos(1 - 3x)}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(c) The composition \({\bf{f}} \circ {\bf{f}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = 1 - 3x}}\) is \({\bf{9}}{{\bf{x}}^{\bf{2}}}{\bf{ - 2}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(d) The composition \({\bf{g}} \circ {\bf{g}}\) with \({\bf{g}}\left( {\bf{x}} \right){\bf{ = cosx}}\) is \({\bf{cos(cosx)}}\) and has domain\(\left( { - \infty ,\infty } \right)\).