Chapter 1: Q40E (page 23)
Find the functions (a) \({\bf{f}} \circ {\bf{g}}\) ,(b) \({\bf{g}} \circ {\bf{f}}\) ,(c) \({\bf{f}} \circ {\bf{f}}\) and (d) \({\bf{g}} \circ {\bf{g}}\) and their domains.
\({\bf{f}}\left( {\bf{x}} \right){\bf{ = x - 2}}\) \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ + 3x + 4}}\)
Short Answer
(a) The composition \({\bf{f}} \circ {\bf{g}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = x - 2}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ + 3x + 4}}\) is \({{\bf{x}}^{\bf{2}}}{\bf{ + 3x + 2}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(b) The composition \({\bf{g}} \circ {\bf{f}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = x - 2}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ + 3x + 4}}\) is \({{\bf{x}}^{\bf{2}}}{\bf{ - x + 2}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(c) The composition \({\bf{f}} \circ {\bf{f}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = x - 2}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ + 3x + 4}}\) is \({\bf{x - 4}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(d) The composition \({\bf{g}} \circ {\bf{g}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = x - 2}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ + 3x + 4}}\) is \({{\bf{x}}^{\bf{4}}}{\bf{ + 6}}{{\bf{x}}^{\bf{3}}}{\bf{ + 20}}{{\bf{x}}^{\bf{2}}}{\bf{ + 33x + 32}}\) and has domain\(\left( { - \infty ,\infty } \right)\).