(b)
Substitute \(10 - z\)for \(\rho (x,y,z)\) and \(\sqrt {{x^2} + {y^2}} \)for \(z\)in equation (2),

Modify equation (3) as follows.

Obtain\({{\rm{r}}_x}\)as shown below.
Modify equation (3) as follows.
\({{\rm{r}}_x} = \frac{{\partial x}}{{\partial x}}{\rm{i}} + \frac{{\partial y}}{{dx}}{\rm{j}} + \frac{{\partial z}}{{\partial x}}{\rm{k}}\)
Substitute\(x\)for\(x,y\)for\(y\)and
\(\begin{array}{l}\sqrt {{x^2} + {y^2}} \forall z\\{{\bf{r}}_x} = \frac{{\partial x}}{{\partial x}}{\rm{i}} + \frac{{\partial y}}{{\partial x}}{\rm{j}} + \frac{{\partial z}}{{\partial x}}{\rm{k}}\$ ,\end{array}\)
\(\begin{array}{l}{{\rm{r}}_x} = \frac{\partial }{{\partial x}}(x){\rm{i}} + \frac{\partial }{{\partial x}}(y){\rm{j}} + \frac{\partial }{{\partial x}}\left( {\sqrt {{x^2} + y} } \right.\\ = {\rm{i}} + (0){\rm{j}} + \left( {\frac{{2x}}{{2\sqrt {{x^2} + {y^2}} }}} \right){\rm{k}}\\ = {\rm{i}} + \left( {\frac{x}{{\sqrt {{x^2} + {y^2}} }}} \right){\rm{k}}\end{array}\)
Obtain\({r_y}\)as follows.
Modify equation (3) as shown below.
\({{\rm{r}}_y} = \frac{{\partial x}}{{\partial y}}{\rm{i}} + \frac{{\partial y}}{{\partial y}}{\rm{j}} + \frac{{\partial z}}{{\partial y}}{\rm{k}}\)







