Chapter 1: Q39E (page 23)
Find the functions
(a) \({\bf{f}} \circ {\bf{g}}\)
(b) \({\bf{g}} \circ {\bf{f}}\)
(c) \({\bf{f}} \circ {\bf{f}}\)
(d) \({\bf{g}} \circ {\bf{g}}\)
and their domains.
\({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}\) \({\bf{g}}\left( {\bf{x}} \right){\bf{ = 2x + 1}}\)
Short Answer
(a) The composition \({\bf{f}} \circ {\bf{g}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = 2x + 1}}\) is \({\bf{4}}{{\bf{x}}^{\bf{2}}}{\bf{ + 2x}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(b) The composition \({\bf{g}} \circ {\bf{f}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = 2x + 1}}\) is \({\bf{2}}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(c) The composition \({\bf{f}} \circ {\bf{f}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = 2x + 1}}\) is \({{\bf{x}}^{\bf{4}}}{\bf{ - 2}}{{\bf{x}}^{\bf{2}}}\) and has domain\(\left( { - \infty ,\infty } \right)\).
(d) The composition \({\bf{g}} \circ {\bf{g}}\) with \({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}\) and \({\bf{g}}\left( {\bf{x}} \right){\bf{ = 2x + 1}}\) is \({\bf{4x + 3}}\) and has domain\(\left( { - \infty ,\infty } \right)\).