Chapter 1: Q38E (page 22)
Find
(a) \({\bf{f + g}}\)
(b) \({\bf{f}} - {\bf{g}}\)
(c) \({\bf{fg}}\)
(d) \({\bf{f}}/{\bf{g}}\)
and state their domains.
38. \({\bf{f}}\left( x \right) = \sqrt {3 - x} \) \(g\left( x \right) = \sqrt {{x^2} - 1} \)
Short Answer
(a) The sum of the two functions is \(\left( {{\bf{f + g}}} \right)\left( {\bf{x}} \right){\bf{ = }}\sqrt {{\bf{3 - x}}} {\bf{ + }}\sqrt {{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}} \) with domain \(\left( {{\bf{ - }}\infty {\bf{, - 1}}} \right){\bf{U}}\left( {{\bf{1,3}}} \right)\).
(b) The difference of the two functions is \(\left( {{\bf{f - g}}} \right)\left( {\bf{x}} \right){\bf{ = }}\sqrt {{\bf{3 - x}}} {\bf{ - }}\sqrt {{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}} \) with domain\(\left( {{\bf{ - }}\infty {\bf{, - 1}}} \right){\bf{U}}\left( {{\bf{1,3}}} \right)\).
(c) The product of the two functions is \(\left( {{\bf{fg}}} \right)\left( {\bf{x}} \right){\bf{ = }}\sqrt {{\bf{3}}{{\bf{x}}^{\bf{2}}}{\bf{ - 3 - }}{{\bf{x}}^{\bf{3}}}{\bf{ + x}}} \)with domain\(\left( {{\bf{ - }}\infty {\bf{, - 1}}} \right){\bf{U}}\left( {{\bf{1,3}}} \right)\).
(d) The division of the two functions is \(\left( {{\bf{f/g}}} \right)\left( {\bf{x}} \right){\bf{ = }}\sqrt {\frac{{{\bf{3 - x}}}}{{{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}}}} \) with domain \(\left( {{\bf{ - }}\infty {\bf{, - 1}}} \right){\bf{U}}\left( {{\bf{1,3}}} \right)\).