Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find

(a) \({\bf{f + g}}\)

(b) \({\bf{f}} - {\bf{g}}\)

(c) \({\bf{fg}}\)

(d) \({\bf{f}}/{\bf{g}}\)

and state their domains.

38. \({\bf{f}}\left( x \right) = \sqrt {3 - x} \) \(g\left( x \right) = \sqrt {{x^2} - 1} \)

Short Answer

Expert verified

(a) The sum of the two functions is \(\left( {{\bf{f + g}}} \right)\left( {\bf{x}} \right){\bf{ = }}\sqrt {{\bf{3 - x}}} {\bf{ + }}\sqrt {{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}} \) with domain \(\left( {{\bf{ - }}\infty {\bf{, - 1}}} \right){\bf{U}}\left( {{\bf{1,3}}} \right)\).

(b) The difference of the two functions is \(\left( {{\bf{f - g}}} \right)\left( {\bf{x}} \right){\bf{ = }}\sqrt {{\bf{3 - x}}} {\bf{ - }}\sqrt {{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}} \) with domain\(\left( {{\bf{ - }}\infty {\bf{, - 1}}} \right){\bf{U}}\left( {{\bf{1,3}}} \right)\).

(c) The product of the two functions is \(\left( {{\bf{fg}}} \right)\left( {\bf{x}} \right){\bf{ = }}\sqrt {{\bf{3}}{{\bf{x}}^{\bf{2}}}{\bf{ - 3 - }}{{\bf{x}}^{\bf{3}}}{\bf{ + x}}} \)with domain\(\left( {{\bf{ - }}\infty {\bf{, - 1}}} \right){\bf{U}}\left( {{\bf{1,3}}} \right)\).

(d) The division of the two functions is \(\left( {{\bf{f/g}}} \right)\left( {\bf{x}} \right){\bf{ = }}\sqrt {\frac{{{\bf{3 - x}}}}{{{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}}}} \) with domain \(\left( {{\bf{ - }}\infty {\bf{, - 1}}} \right){\bf{U}}\left( {{\bf{1,3}}} \right)\).

Step by step solution

01

Given data

The provided functions are

\(f\left( x \right) = \sqrt {3 - x} \)

\(g\left( x \right) = \sqrt {{x^2} - 1} \)

02

Combinations of functions

The combination of two functions is written as

\(\begin{array}{l}\left( {{\bf{f + g}}} \right)\left( {\bf{x}} \right){\bf{ = f}}\left( {\bf{x}} \right){\bf{ + g}}\left( {\bf{x}} \right)\;\;\;\;\;.....\left( {\bf{1}} \right)\\\left( {{\bf{f - g}}} \right)\left( {\bf{x}} \right){\bf{ = f}}\left( {\bf{x}} \right){\bf{ - g}}\left( {\bf{x}} \right)\;\;\;\;\;.....\left( {\bf{2}} \right)\\\left( {{\bf{fg}}} \right)\left( {\bf{x}} \right){\bf{ = f}}\left( {\bf{x}} \right){\bf{g}}\left( {\bf{x}} \right)\;\;\;\;\;.....\left( {\bf{3}} \right)\\\left( {{\bf{f/g}}} \right)\left( {\bf{x}} \right){\bf{ = f}}\left( {\bf{x}} \right){\bf{/g}}\left( {\bf{x}} \right)\;\;\;\;\;.....\left( {\bf{4}} \right)\end{array}\)

If the domain of \(f\left( x \right)\) is \(A\) and the domain of \(g\left( x \right)\) is B, then the domain of their combination is \({\bf{A}} \cap {\bf{B}}\) .

03

Sum of two functions

From equation (1),

\(\left( {f + g} \right)\left( x \right) = \sqrt {3 - x} + \sqrt {{x^2} - 1} \)

Domain of \(f\left( x \right)\) is

\(A = \left( { - \infty ,3} \right)\)

Domain of \(g\left( x \right)\) is

\(B = \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\)

Thus, domain of \(\left( {f + g} \right)\left( x \right)\) is

\(A \cap B = \left( { - \infty , - 1} \right) \cup \left( {1,3} \right)\)

The combined function is \(\sqrt {3 - x} + \sqrt {{x^2} - 1} \) and the domain is \(\left( { - \infty , - 1} \right) \cup \left( {1,3} \right)\).

04

Difference of two functions

From equation (2),

\(\left( {f - g} \right)\left( x \right) = \sqrt {3 - x} - \sqrt {{x^2} - 1} \)

Domain of \(f\left( x \right)\) is

\(A = \left( { - \infty ,3} \right)\)

Domain of \(g\left( x \right)\) is

\(B = \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\)

Thus, domain of \(\left( {f - g} \right)\left( x \right)\) is

\(A \cap B = \left( { - \infty , - 1} \right) \cup \left( {1,3} \right)\)

The combined function is \(\sqrt {3 - x} - \sqrt {{x^2} - 1} \) and the domain is \(\left( { - \infty , - 1} \right) \cup \left( {1,3} \right)\).

05

Product of two functions

From equation (3),

\(\begin{array}{c}\left( {fg} \right)\left( x \right) = \sqrt {3 - x} \sqrt {{x^2} - 1} \\ = \sqrt {\left( {3 - x} \right)\left( {{x^2} - 1} \right)} \\ = \sqrt {3{x^2} - 3 - {x^3} + x} \end{array}\)

Domain of \(f\left( x \right)\) is

\(A = \left( { - \infty ,3} \right)\)

Domain of \(g\left( x \right)\) is

\(B = \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\)

Thus, domain of \(\left( {fg} \right)\left( x \right)\) is

\(A \cap B = \left( { - \infty , - 1} \right) \cup \left( {1,3} \right)\)

The combined function is \(\sqrt {3{x^2} - 3 - {x^3} + x} \) and the domain is\(\left( { - \infty , - 1} \right) \cup \left( {1,3} \right)\).

06

Division of two functions

From equation (4),

\(\begin{array}{c}\left( {f/g} \right)\left( x \right) = \sqrt {3 - x} /\sqrt {{x^2} - 1} \\ = \sqrt {\frac{{3 - x}}{{{x^2} - 1}}} \end{array}\)

Domain of \(f\left( x \right)\) is

\(A = \left( { - \infty ,3} \right)\)

Domain of \(g\left( x \right)\) is

\(B = \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\)

But, \(g\left( { \pm 1} \right) = 0\)

Thus, domain of \(\left( {f/g} \right)\left( x \right)\) is

\(A \cap B = \left( { - \infty , - 1} \right) \cup \left( {1,3} \right)\)

The combined function is \(\sqrt {\frac{{3 - x}}{{{x^2} - 1}}} \) and the domain is\(\left( { - \infty , - 1} \right) \cup \left( {1,3} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free