Solving RHS separately –
\({F^\prime }(x) = \frac{d}{{dx}}\int_0^x {\frac{{{e^t}}}{t}} dt\)
Here,\(f(t) = \frac{{{e^t}}}{t}\)considering the fundamental theorem of calculus\({F^\prime }(x) = f(x)\)-
\({F^\prime }(x) = \frac{{{e^x}}}{x}\)
\(G(x) = \int_0^{\sqrt x } {\frac{{{e^t}}}{t}} dt = H(\sqrt x ) - H(0)\;\) \(H(t)\)is the antiderivative of \(h(t) = \frac{{{e^t}}}{t}\).
\(\begin{aligned}{c}{G^\prime }(x) &= \frac{d}{{dx}}\int_0^{\sqrt x } {\frac{{{e^t}}}{t}} dt = {H^\prime }(\sqrt x ) \cdot \frac{d}{{dx}}\sqrt x - 0\\{G^\prime }(x) &= h(\sqrt x ) \cdot \frac{1}{{2\sqrt x }}\\{G^\prime }(x) &= \frac{{{e^{\sqrt x }}}}{{\sqrt x }} \cdot \frac{1}{{2\sqrt x }} = \frac{{{e^{\sqrt x }}}}{{2x}}\end{aligned}\)
Now plugging in both \({F^\prime }(x)\)and \({G^\prime }(x)\)in equation \((1)\)-
\(\frac{d}{{dx}}\int_{\sqrt x }^x {\frac{{{e^t}}}{t}} dt = \frac{{{e^x}}}{x} - \frac{{{e^{\sqrt x }}}}{{2x}}\)
Therefore, the derivative is obtained as \(\frac{{{e^x}}}{x} - \frac{{{e^{\sqrt x }}}}{{2x}}\).