Chapter 1: Q37E (page 1)
Find
(a) \({\bf{f + g}}\)
(b) \({\bf{f}} - {\bf{g}}\)
(c) \({\bf{fg}}\)
(d) \({\bf{f}}/{\bf{g}}\)
and state their domains.
37. \({\bf{f}}\left( x \right) = {x^3} + 2{x^2}\) \(g\left( x \right) = 3{x^2} - 1\)
Short Answer
(a) The sum of the two functions is \(\left( {{\bf{f + g}}} \right)\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{3}}}{\bf{ + 5}}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}\) with domain \(\left( {{\bf{ - }}\infty {\bf{,}}\infty } \right)\).
(b) The difference of the two functions is \(\left( {{\bf{f - g}}} \right)\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{3}}}{\bf{ - }}{{\bf{x}}^{\bf{2}}}{\bf{ + 1}}\) with domain \(\left( {{\bf{ - }}\infty {\bf{,}}\infty } \right)\).
(c) The product of the two functions is \(\left( {{\bf{fg}}} \right)\left( {\bf{x}} \right){\bf{ = 3}}{{\bf{x}}^{\bf{5}}}{\bf{ + 6}}{{\bf{x}}^{\bf{4}}}{\bf{ - }}{{\bf{x}}^{\bf{3}}}{\bf{ - 2}}{{\bf{x}}^{\bf{2}}}\)with domain \(\left( {{\bf{ - }}\infty {\bf{,}}\infty } \right)\).
(d) The division of the two functions is \(\left( {{\bf{f/g}}} \right)\left( {\bf{x}} \right){\bf{ = }}\frac{{{{\bf{x}}^{\bf{3}}}{\bf{ + 2}}{{\bf{x}}^{\bf{2}}}}}{{{\bf{3}}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}}}\) with domain \(\left( {{\bf{ - }}\infty {\bf{,}}\infty } \right);x \ne \pm \sqrt {\frac{1}{3}} \).