Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the statement using the \(\varepsilon \) \(\delta \)definition of a limit.

\(\mathop {\lim }\limits_{x \to - 1.5} \frac{{9 - 4{x^2}}}{{3 + 2x}} = 6\)

Short Answer

Expert verified

It is proved that\(\mathop {\lim }\limits_{x \to - 1.5} \frac{{9 - 4{x^2}}}{{3 + 2x}} = 6\).

Step by step solution

01

Describe the given information

It is required to prove\(\mathop {\lim }\limits_{x \to - 1.5} \frac{{9 - 4{x^2}}}{{3 + 2x}} = 6\)by using\(\varepsilon \),\(\delta \)definition.

02

Prove that \(\mathop {\lim }\limits_{x \to  - 1.5} \frac{{9 - 4{x^2}}}{{3 + 2x}} = 6\)

Consider the limit\(\mathop {\lim }\limits_{x \to - 1.5} \frac{{9 - 4{x^2}}}{{3 + 2x}} = 6\).

Use \(\varepsilon - \delta \) definition to prove the statement\(\mathop {\lim }\limits_{x \to - 1.5} \frac{{9 - 4{x^2}}}{{3 + 2x}} = 6\).

If \(0 < \left| {x - \left( { - 1.5} \right)} \right| < \delta \)then\(0 < \left| {\left( {\frac{{9 - 4{x^2}}}{{3 + 2x}}} \right) - 6} \right| < \varepsilon \).

Simplify the absolute value inequality as follows.

If \(0 < \left| {x + 1.5} \right| < \delta \)then\(0 < \left| {\frac{{\left( {3 + 2x} \right)\left( {3 - 2x} \right)}}{{3 + 2x}} - 6} \right| < \varepsilon \).

If \(0 < \left| {x + 1.5} \right| < \delta \)then\(0 < \left| {\left( {3 - 2x} \right) - 6} \right| < \varepsilon \).

If \(0 < \left| {x + 1.5} \right| < \delta \)then \(0 < \left| { - 3 - 2x} \right| < \varepsilon \).

Factor out \(2\) from the inequality \(0 < \left| { - 3 - 2x} \right| < \varepsilon \)

\(\begin{array}{c}0 < \left| {\left( 2 \right)\left( { - 1} \right)\left( {x + 1.5} \right)} \right| < \varepsilon \\0 < 2\left| {x + 1.5} \right| < \varepsilon \\0 < \left| {x + 1.5} \right| < \frac{\varepsilon }{2}\end{array}\).

If \(0 < \left| {x + 1.5} \right| < \delta \)then\(0 < \left| {x + 1.5} \right| < \frac{\varepsilon }{2}\).

Choose\(\delta = \frac{\varepsilon }{2}\), and then simplify the inequality.

\(\begin{array}{c}0 < 2\left| {x + 1.5} \right| < \varepsilon \\0 < \left| {2x + 3} \right| < \varepsilon \\0 < \left| {\frac{{{{\left( {2x + 3} \right)}^2}}}{{3 + 2x}}} \right| < \varepsilon \\0 < \left| {\frac{{4{x^2} + 12x + 9}}{{3 + 2x}}} \right| < \varepsilon \end{array}\)

Simplify further.

\(\begin{array}{c}0 < \left| {\frac{{ - 4{x^2} - 12x - 9}}{{3 + 2x}}} \right| < \varepsilon \\0 < \left| {\frac{{9 - 4{x^2} - 12x - 18}}{{3 + 2x}}} \right| < \varepsilon \\0 < \left| {\frac{{9 - 4{x^2}}}{{3 + 2x}} - 6} \right| < \varepsilon \end{array}\)

Therefore, it is proved that\(\mathop {\lim }\limits_{x \to - 1.5} \frac{{9 - 4{x^2}}}{{3 + 2x}} = 6\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Biologists have noticed that the chirping rate of crickets of a certain species is related to temperature, and the relationship appears to be very nearly linear. A cricket produces 113 chirps per minute at\({\bf{7}}{{\bf{0}}^{\bf{o}}}{\bf{F}}\)and 173 chirps per minute at\({\bf{8}}{{\bf{0}}^{\bf{o}}}{\bf{F}}\).

(a) Find a linear equation that models the temperature T as a function of the number of chirps per minute N.

(b) What is the slope of the graph? What does it represent?

(c) If the crickets are chirping at 150 chirps per minute, estimate the temperature

Find the functions (a) \({\bf{f}} \circ {\bf{g}}\) ,(b) \({\bf{g}} \circ {\bf{f}}\) ,(c) \({\bf{f}} \circ {\bf{f}}\) and (d) \({\bf{g}} \circ {\bf{g}}\) and their domains.

\({\bf{f}}\left( {\bf{x}} \right){\bf{ = x - 2}}\) \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ + 3x + 4}}\)

Graphs of\({\bf{f}}\)and\({\bf{g}}\)are shown. Decide whether each function is even, odd, or neither. Explain your reasoning.

Evaluate the difference quotient for the given function. Simplify your answer.

\(f\left( x \right) = \frac{1}{x}\), \(\frac{{f\left( x \right) - f\left( a \right)}}{{x - a}}\)

The manager of a weekend flea market knows from past experience that if he charges dollars for rental space at the flea market, then the number of spaces he can rent is given by the equation\({\bf{y = 200 - 4x}}{\bf{.}}\)

(a) Sketch a graph of this linear function. (Remember that the rental charge per space and the number of spaces rented canโ€™t be negative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of the graph represent?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free