The parameterisation of the cylinder is
\(S:{\bf{r}}(u,v) = u{\bf{i}} + \sin v{\bf{j}} + 2\cos v{\bf{k}}\)
Since the surface is part of the cylinder above\(xy\)plane, we have\(z > 0\)
Therefore
\( - \frac{\pi }{2} < v < \frac{\pi }{2}\)
Also the surface is part of the cylinder between the planes\(x = - 2\)and\(x = 2\)
Hence\( - 2 < u < 2\)
Note that

Where\({\bf{n}}\)is the unit normal vector.
Note that\(dS = \left| {{{\bf{r}}_u} \times {{\bf{r}}_v}} \right|dA\)
The Flux through a surface is defined only if the surface is orientable.
Note that if the surface is orientable, there will be two normal unit vectors at every point .
We can write
\(d{\bf{S}} = {\bf{n}}dA = \pm \frac{{\left( {{{\bf{r}}_u} \times {{\bf{r}}_v}} \right)}}{{\left| {{{\bf{r}}_u} \times {{\bf{r}}_v}} \right|}}\left| {{{\bf{r}}_u} \times {{\bf{r}}_v}} \right|dA = \pm \left( {{{\bf{r}}_u} \times {{\bf{r}}_v}} \right)dA\)
For finding the flux we always use\({\bf{n}}\)which correspond to the positive orientation.
In this case the normal vectors must be pointing outwards .
We will first find\({{\bf{r}}_u} \times {{\bf{r}}_v}\)and then we will decide\(d{\bf{S}}\)
\(S:{\bf{r}}(u,v) = u{\bf{i}} + \sin v{\bf{j}} + 2\cos v{\bf{k}}\)
Therefore,
\({{\bf{r}}_u} = {\bf{i}}\)
and
\(\begin{array}{l}{{\bf{r}}_v} = \cos v{\bf{j}} - 2\sin v{\bf{k}}{{\bf{r}}_u} \times {{\bf{r}}_v}\\ = \left| {\begin{array}{*{20}{c}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\1&0&0\\0&{\cos v}&{ - 2\sin v}\end{array}} \right|{{\bf{r}}_u} \times {{\bf{r}}_v}\\ = {\bf{i}}\left| {\begin{array}{*{20}{c}}0&0\\{\cos v}&{ - 2\sin v}\end{array}} \right| - {\bf{j}}\left| {\begin{array}{*{20}{c}}1&0\\0&{ - 2\sin v}\end{array}} \right| + {\bf{k}}\left| {\begin{array}{*{20}{c}}1&0\\0&{\cos v}\end{array}} \right|{{\bf{r}}_u} \times {{\bf{r}}_v}\\ = 2\sin v{\bf{j}} + \cos v{\bf{k}}\end{array}\)