Consider the limit \(\mathop {\lim }\limits_{x \to - 2} \left( {3x + 5} \right) = - 1\).
Use \(\varepsilon - \delta \) definition to prove the statement \(\mathop {\lim }\limits_{x \to - 2} \left( {3x + 5} \right) = - 1\).
If \(0 < \left| {x + 2} \right| < \delta \)then \(0 < \left| {\left( {3x + 5} \right) + 1} \right| < \varepsilon \).
Simplify in the absolute value inequality as follows.
If \(0 < \left| {x + 2} \right| < \delta \)then \(0 < \left| {3x + 6} \right| < \varepsilon \).
If \(0 < \left| {x + 2} \right| < \delta \)then \(0 < \left| {3\left( {x + 2} \right)} \right| < \varepsilon \).
Use the property \(\left| {ab} \right| = \left| a \right|\left| b \right|\) to take out \(3\).
If \(0 < \left| {x + 2} \right| < \delta \)then\(0 < 3\left| {\left( {x + 2} \right)} \right| < \varepsilon \).
Divide the inequality by \(3\)
If \(0 < \left| {x + 2} \right| < \delta \)then\(0 < \left| {\left( {x + 2} \right)} \right| < \frac{\varepsilon }{3}\).
Choose\(\delta = \frac{\varepsilon }{3}\), then
Multiply each side of the inequality by\(3\).
\(\begin{array}{c}0 < 3\left| {\left( {x + 2} \right)} \right| < \varepsilon \\0 < \left| {3\left( {x + 2} \right)} \right| < \varepsilon \\0 < \left| {3x + 6} \right| < \varepsilon \\0 < \left| {3x + 5 + 1} \right| < \varepsilon \end{array}\)
Simplify further.
\(0 < \left| {\left( {3x + 5} \right) - \left( { - 1} \right)} \right| < \varepsilon \)
Therefore, it is proved that\(\mathop {\lim }\limits_{x \to - 2} \left( {3x + 5} \right) = - 1\).
Draw the graph of the function \(f\left( x \right) = 3x + 5\) locating the distance \(\delta \) and \(\varepsilon \) limits.
