The function \(h\left( x \right)\) is defined only when\(4 - {x^2} \ge 0\), since the square root of a negative number is not defined.
The domain of \(h\) consists of all values of \(x\) such that\(4 - {x^2} \ge 0\).
\(\begin{array}{c}4 - {x^2} \ge 0\\{x^2} \le 4\\\left| x \right| \le 2\end{array}\)
This means that\( - 2 \le x \le 2\).
Therefore, the domain of the function \(h\left( x \right) = \sqrt {4 - {x^2}} \) is \( - 2 \le x \le 2\)or\(\left( { - 2,\;2} \right)\).
Substitute the values of the domain interval in\(h\left( x \right) = \sqrt {4 - {x^2}} \), and find the minimum and maximum values.
\(\begin{aligned}h\left( { - 2} \right) &= \sqrt {4 - {{\left( { - 2} \right)}^2}} \\ &= \sqrt {4 - 4} \\ &= 0\end{aligned}\)
And,
\(\begin{aligned}h\left( 0 \right) &= \sqrt {4 - {{\left( 0 \right)}^2}} \\ &= \sqrt 4 \\ &= 2\end{aligned}\)
And,
\(\begin{aligned}h\left( 2 \right) &= \sqrt {4 - {{\left( 2 \right)}^2}} \\ &= \sqrt {4 - 4} \\ &= 0\end{aligned}\)
The minimum value of \(h\left( x \right)\) is \(0\) and the maximum value of \(h\left( x \right)\)is\(2\).
Therefore, the range of the function \(h\left( x \right) = \sqrt {4 - {x^2}} \)is\(\left( {0,\;2} \right)\).
Draw the graph of the function \(h\left( x \right) = \sqrt {4 - {x^2}} \)as follows.![]()
