The fourth root exists only for positive quantities and the denominator should not be equal to\(0\).
\(\begin{array}{c}{x^2} - 5x > 0\\x\left( {x - 5} \right) > 0\end{array}\)
Let\(f\left( x \right) = x\left( {x - 5} \right)\).
If \(f\left( x \right) = 0\) then roots of the function are \(0\)and\(5\).
Construct the following table.
Interval | Sign of \(f\left( x \right)\) |
\(\left( { - \infty ,\;0} \right)\) | + |
\(\left( {0,\;5} \right)\) | - |
\(\left( {5,\;\infty } \right)\) | + |
From the above table, it can be observed that \(x\left( {x - 5} \right) > 0\) satisfies when \(x \in \left( { - \infty ,\;0} \right)\)or\(x \in \left( {5,\;\infty } \right)\).
Therefore, the domain of the function \(h\left( x \right) = \frac{1}{{\sqrt(4){{{x^2} - 5x}}}}\)is\(\left( { - \infty ,\;0} \right) \cup \left( {5,\;\infty } \right)\).