Chapter 1: Q28E (page 9)
Find the domain of the function
\(g\left( t \right) = \sqrt {3 - t} - \sqrt {2 + t} \)
Short Answer
The domain of the function \(g\left( t \right) = \sqrt {3 - t} - \sqrt {2 + t} \)is\(\left( { - 2,\;3} \right)\).
Chapter 1: Q28E (page 9)
Find the domain of the function
\(g\left( t \right) = \sqrt {3 - t} - \sqrt {2 + t} \)
The domain of the function \(g\left( t \right) = \sqrt {3 - t} - \sqrt {2 + t} \)is\(\left( { - 2,\;3} \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the domain of the function
\(F\left( p \right) = \sqrt {2 - \sqrt p } \)
Find the functions (a)\({\bf{f}} \circ {\bf{g}}\), (b)\({\bf{g}} \circ {\bf{f}}\), (c)\({\bf{f}} \circ {\bf{f}}\), and (d) \({\bf{g}} \circ {\bf{g}}\) and their domains.
\({\bf{f}}\left( {\bf{x}} \right){\bf{ = x + }}\frac{{\bf{1}}}{{\bf{x}}}\) \({\bf{g}}\left( {\bf{x}} \right){\bf{ = }}\frac{{{\bf{x + 1}}}}{{{\bf{x + 2}}}}\)
Prove the statement using the \(\varepsilon \) \(\delta \)definition of a limit.
\(\mathop {\lim }\limits_{x \to - 1.5} \frac{{9 - 4{x^2}}}{{3 + 2x}} = 6\)
A homeowner mows the lawn every Wednesday afternoon. Sketch a rough graph of the height of the grass as a function of time over the course of a four-week period.
Determine whether the curve is the graph of a function of x. If it is, state the domain and range of the function.
What do you think about this solution?
We value your feedback to improve our textbook solutions.