\(\begin{array}{c}{\rm{ln(x) - 2 = 0}}\\{\rm{lnx = 2x}}\\{\rm{ = }}{{\rm{e}}^{\rm{2}}} \approx {\rm{7}}{\rm{.4}}\end{array}\)
After the critical number, test the interval.
\(\left( {{{\rm{e}}{\rm{2}}}{\rm{,}}\infty } \right){\rm{:}}\;\;\;{{\rm{f}}'}{\rm{(8)}} \approx {\rm{0}}{\rm{.003 > 0}}\)
It is positive as\({\rm{x}} \to \infty \), so \({\rm{f}}\)is increasing for\({\rm{x > }}{{\rm{e}}{\rm{2}}}\).
Since \(\frac{{\sqrt {\rm{n}} }}{{{\rm{lnn}}}}\) is increasing
\(\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \frac{{{{{\rm{( - 1)}}}{\rm{n}}}\sqrt {\rm{n}} }}{{{\rm{lnn}}}}{\rm{ = DNE}}\)
Because there is no limit, the series diverges using the Test for Divergence.
Therefore, the series is divergent.