Solve for\(f\left( {a + h} \right)\).
\(\begin{aligned}f\left( {a + h} \right) &= {\left( {a + h} \right)^3}\\ &= {a^3} + {h^3} + 3ah\left( {a + h} \right)\\ &= {a^3} + {h^3} + 3{a^2}h + 3a{h^2}\end{aligned}\)
Solve for\(f\left( a \right)\).
\(f\left( 3 \right) = {a^3}\)
Substitute all the values in the expression\(\frac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\).
\(\begin{aligned}\frac{{f\left( {a + h} \right) - f\left( a \right)}}{h} &= \frac{{{a^3} + {h^3} + 3{a^2}h + 3a{h^2} - {a^3}}}{h}\\ &= \frac{{{h^3} + 3{a^2}h + 3a{h^2}}}{h}\\ &= h\left( {\frac{{{h^2} + 3{a^2} + 3ah}}{h}} \right)\\ &= 3{a^2} + 3ah + {h^2}\end{aligned}\)
Therefore, the value of the expression \(\frac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\)is\(3{a^2} + 3ah + {h^2}\).