Chapter 1: Q21E (page 34)
Evaluate the function
\(f\left( x \right) = {x^2} - \left( {{{{2^x}} \mathord{\left/{\vphantom{{{2^x}} {1000}}}\right.}{1000}}}\right)\)
forx=1,0.8,0.6,0.4,0.2,0.1, and0.05, and guess the value of \(\mathop {\lim }\limits_{x \to 0} \left( {{x^2} - \frac{{{2^x}}}{{1000}}} \right)\)
(b) Evaluate f(x) for x=0.04,\0.02,\0.01,\0.005,\0.003,and0.001.Guess again.
Short Answer
(a) The values of \(f\left( x \right)\) for the given values of \(x\) are \(0.998000\), \(0.638259\), \(0.358484\), \(0.158680\), \(0.038851\), \(0.008928\), and \(0.001465\), and \(\mathop {\lim }\limits_{x \to 0} \left( {{x^2} - \frac{{{2^x}}}{{1000}}} \right) = 0\).
(b) The values of \(f\left( x \right)\) for the given values of \(x\) are\(0.000572\), \( - 0.000614\), \( - 0.000907\), \( - 0.000978\), \( - 0.000993\), and \( - 0.001000\), and \(\mathop {\lim }\limits_{x \to 0} \left( {{x^2} - \frac{{{2^x}}}{{1000}}} \right) = - 0.001\)