Solve for\(f\left( {3 + h} \right)\).
\(\begin{aligned}f\left( {3 + h} \right) &= 4 + 3\left( {3 + h} \right) - {\left( {3 + h} \right)^2}\\ &= 4 + 9 + 3h - \left( {9 + 6h + {h^2}} \right)\\ &= 4 + 9 + 3h - 9 - 6h - {h^2}\\ &= 4 - 3h - {h^2}\end{aligned}\)
Solve for\(f\left( 3 \right)\).
\(\begin{aligned}f\left( 3 \right) &= 4 + 3\left( 3 \right) - {\left( 3 \right)^2}\\ &= 4 + 9 - 9\\ &= 4\end{aligned}\)
Substitute all the values in the expression\(\frac{{f\left( {3 + h} \right) - f\left( 3 \right)}}{h}\).
\(\begin{aligned}\frac{{f\left( {3 + h} \right) - f\left( 3 \right)}}{h} &= \frac{{4 - 3h - {h^2} - 4}}{h}\\ &= \frac{{ - 3h - {h^2}}}{h}\\ &= - 3 - h\end{aligned}\)
Therefore, the value of the expression \(\frac{{f\left( {3 + h} \right) - f\left( 3 \right)}}{h}\)is\( - 3 - h\).