Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Use a triple integral to find the volume of the given solid. The solid enclosed by the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 4}}\)and the planes \({\rm{y = - 1}}\) and \({\rm{y + z = 4}}\).

Short Answer

Expert verified

Volume is \({\rm{20\pi }}\).

Step by step solution

01

Define volume

The quantity of three-dimensional space filled by the matter is referred to as volume.

02

Evaluating volume

Begin by looking for \({\rm{y}}\) limits. It can be seen that minimum \({\rm{y}}\)is \({\rm{y = - 1}}\) and \({\rm{y + z = 4}}\), \({\rm{y = 4 - z}}\)is maximum \({\rm{y}}\). Because \({\rm{z}}\) is likewise constrained in the provided phrase \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 4}}\) so \({\rm{z > - 2}}\) the second one is the maximum. As a result,

Now it seems that we need to integrate across \({\rm{D}}\), which we know is defined by \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 4}}\) (since we just dealt with y), let's convert everything to polar coordinates.

\(\begin{array}{c}{\rm{ = }}\int_{{\rm{ - 2}}}^{\rm{2}} {\int_{{\rm{ - }}\sqrt {{\rm{4 - }}{{\rm{x}}^{\rm{2}}}} }^{\sqrt {{\rm{4 - }}{{\rm{x}}^{\rm{2}}}} } {{\rm{(5 - z)dzdx}}} } \\{\rm{ = }}\int_{\rm{0}}^{{\rm{2\pi }}} {\int_{\rm{0}}^{\rm{2}} {{\rm{(5 - rsin\theta )rdrd\theta }}} } \\{\rm{ = }}\int_{\rm{0}}^{{\rm{2\pi }}} {\int_{\rm{0}}^{\rm{2}} {{\rm{5r - }}{{\rm{r}}^{\rm{2}}}{\rm{sin\theta drd\theta }}} } \end{array}\)

Now we may complete our double integral. Integrate first with regard to\({\rm{r}}\).

\(\begin{array}{c}{\rm{ = }}\int_{\rm{0}}^{{\rm{2\pi }}} {\left( {\frac{{\rm{5}}}{{\rm{2}}}{{\rm{r}}^{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{3}}}{{\rm{r}}^{\rm{3}}}{\rm{sin\theta }}} \right)} _{\rm{0}}^{\rm{2}}{\rm{d\theta }}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{2\pi }}} {\left( {{\rm{10 - }}\frac{{\rm{8}}}{{\rm{3}}}{\rm{sin\theta - 0}}} \right)} {\rm{d\theta }}\end{array}\)

Integrate in the direction of\({\rm{\theta }}\):

\({\rm{ = }}\left( {{\rm{10\theta + }}\frac{{\rm{8}}}{{\rm{3}}}{\rm{cos\theta }}} \right)_{\rm{0}}^{{\rm{2\pi }}}\)

Thus, the result is,

\(\begin{array}{c}{\rm{ = }}\left( {{\rm{20\pi + }}\frac{{\rm{8}}}{{\rm{3}}}{\rm{ - 0 - }}\frac{{\rm{8}}}{{\rm{3}}}} \right)\\{\rm{ = 20\pi }}\end{array}\)

Therefore, the volume is \({\rm{20\pi }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free