Chapter 1: Q19E (page 1)
If \(f\left( x \right) = 3{x^2} - x + 2\), find \(f\left( 2 \right)\), \(f\left( { - 2} \right)\), \(f\left( a \right)\), \(f\left( { - a} \right)\), \(f\left( {a + 1} \right)\), \(2f\left( a \right)\), \(f\left( {2a} \right)\), \(f\left( {{a^2}} \right)\), \({\left( {f\left( a \right)} \right)^2}\), and \(f\left( {a + h} \right)\).
Short Answer
The values of \(f\left( 2 \right)\), \(f\left( { - 2} \right)\), \(f\left( a \right)\), \(f\left( { - a} \right)\), \(f\left( {a + 1} \right)\), \(2f\left( a \right)\), \(f\left( {2a} \right)\), \(f\left( {{a^2}} \right)\), \({\left( {f\left( a \right)} \right)^2}\), and \(f\left( {a + h} \right)\) are \(2\), \(16\), \(3{a^2} - a + 2\), \(3{a^2} + a + 2\), \(3{a^2} + 5a + 4\), \(6{a^2} - 2a + 4\), \(12{a^2} - 2a + 2\), \(3{a^4} - {a^2} + 2\), \(9{a^4} - 6{a^3} + 13{a^2} - 4a + 4\), and \(3{a^2} + 6ah + 3{h^2} - a - h + 2\), respectively.