Chapter 1: Q19E (page 1)
Find a parametric representation for the surface.
The part of the sphere\({x^2} + {y^2} + {z^2} = 4\)that lies above the cone\(z = \sqrt {{x^2} + {y^2}} \)
Short Answer
The parametric representation of the surface is
\((r\cos \theta ,r\sin \theta ,\sqrt {4 - {r^2}} )\) where \(\theta \in \left( {0,2\pi } \right)\;\& r \in \left( {\sqrt 2 ,2} \right)\)