Compute the values of\(c\)such that\({f^\prime }(c) = \frac{{f(b) - f(a)}}{{b - a}}\).
Substitute the corresponding values.
\(\begin{aligned}{c} - {e^{ - c}} &= \frac{{{e^{ - 2}} - 1}}{{2 - 0}}\\ - {e^{ - c}} &= \frac{{{e^{ - 2}} - 1}}{2}\\ - {e^{ - c}} &= \frac{{ - \left( {1 - {e^{ - 2}}} \right)}}{2}\\{e^{ - c}} &= \frac{{1 - {e^{ - 2}}}}{2}\end{aligned}\)
Take logarithm on both the sides.
\(\begin{aligned}{c} - c &= \ln \left( {\frac{{1 - {e^{ - 2}}}}{2}} \right)\\c &= - \ln \left( {\frac{{1 - {e^{ - 2}}}}{2}} \right)\\c &= \ln {\left( {\frac{{1 - {e^{ - 2}}}}{2}} \right)^{ - 1}}\end{aligned}\)
Thus, the value of\(c = \ln \left( {\frac{2}{{1 - {e^{ - 2}}}}} \right)\).
The equation of the secant line through the end points is,\(\frac{{y - f(a)}}{{x - a}} = \frac{{f(b) - f(a)}}{{b - a}}\).
\(\begin{aligned}{c}\frac{{y - 1}}{{x - 0}} &= \frac{{{e^{ - 2}} - {e^{ - 0}}}}{{2 - 0}}\\\frac{{y - 1}}{x} &= \frac{{{e^{ - 2}} - 1}}{2}\\y - 1 &= \frac{{{e^{ - 2}} - 1}}{2}x\\y &= \frac{{{e^{ - 2}} - 1}}{2}x + 1\end{aligned}\)
Thus, the required secant line is \(y = \frac{{{e^{ - 2}} - 1}}{2}x + 1\).