Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Verify that Stokes' Theorem is true for the given vector field F and surface S.

\({\rm{F(x,y,z) = - 2yzi + yj + 3xk}}\), S is the part of the paraboloid \({\rm{z = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)that lies above the plane, oriented upward

Short Answer

Expert verified

The Stokes' theorem for \({\rm{F(x,y,z) = - 2yzi + yj + 3xk}}\) is True.

Step by step solution

01

Definition of Concept

Integrals: An integral is a mathematical concept that assigns numbers to functions in order to describe displacement, area, volume, and other concepts that arise from combining infinitesimal data. The process of determining integrals is known as integration.

02

Verify that Stokes' Theorem is true for the given vector field F and surface S

Considering the given information:

The field is \({\rm{F(x,y,z) = - 2yzi + yj + 3xk}}\) and

Consider the expression for surface that is part parabolid above the plane is,\({\rm{z = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}{\rm{(1)}}\)

Apply the formula:

Write the expression for curl of\({\rm{F(x,y,z) = Pi + Qj + Rk}}\).

\(\begin{array}{l}{\mathop{\rm curl}\nolimits} {\bf{F}} = \left| {\begin{array}{*{20}{l}}{\bf{i}}&{\bf{j}}&{\bf{k}}\\{\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\P&Q&R\end{array}} \right|\\{\mathop{\rm curl}\nolimits} {\bf{F}} = \left( {\frac{{\partial R}}{{\partial y}} - \frac{{\partial Q}}{{\partial z}}} \right){\bf{i}} - \left( {\frac{{\partial R}}{{\partial x}} - \frac{{\partial P}}{{\partial z}}} \right){\bf{j}} + \left( {\frac{{\partial Q}}{{\partial x}} - \frac{{\partial P}}{{\partial y}}} \right){\bf{k}}(2)\end{array}\)

Write the Stokes' theorem expression.

Here,

Surface is denoted by S.

Consider the surface\({\rm{S,z = g(x,y)}}\), which is oriented upward. Create an expression for the surface integral of F over the surface S.

Here,

A stands for area.

A plane\({\rm{z = 1}}\)intersects the parabolic.

In the equation, replace z with 1. (1),

\(\begin{array}{c}{\rm{1 = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\\{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 5 - 1}}\\{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 4}}\end{array}\)

Because the surface is oriented upward, consider the parametric equations.

\(\begin{array}{l}x = 2\cos t\\y = 2\sin t\\z = 1\quad ,0 \le t \le 2\pi \end{array}\)

Create an expression for the vector function\({\rm{r(t)}}\).

\({\rm{r(t) = xi + yj + zk}}\)

Substitute\({\rm{2cost}}\)for\({\rm{x,2sint}}\)for\({\rm{y,1}}\)for z

\(\begin{array}{c}{\rm{r(t) = 2costi + 2sintj + (1)k}}\\{\rm{ = 2costi + 2sintj + k}}\end{array}\)

Differentiate the expression in terms of t.

\(\begin{array}{c}{{\rm{r}}^{\rm{\cent}}}{\rm{(t) = }}\frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{(2costi + 2sintj + k)}}\\{\rm{ = }}\frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{(2cost)i + }}\frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{(2sint)j + }}\frac{{\rm{d}}}{{{\rm{dt}}}}{\rm{(1)k}}\\{\rm{ = 2( - sint)i + (2cost)j + (0)k}}\\{\rm{ = - 2sinti + 2costj}}\end{array}\)

Determine the value of\({\rm{F(r(t))}}\).

\(\begin{array}{c}{\rm{F(r(t)) = - 2(2sint)(1)i + (2sint)j + 3(2sint)k}}\\{\rm{ = - 4sinti + 2sintj + 6sintk}}\end{array}\)

Determine the value of\({\bf{F}}({\bf{r}}(t)) \cdot {{\bf{r}}^\prime }(t)\).

\(\begin{array}{c}{\rm{F(r(t)) \times }}{{\rm{r}}^{\rm{\cent}}}{\rm{(t) = ( - 4sinti + 2sintj + 6sintk) \times ( - 2sinti + 2costj)}}\\{\rm{ = ( - 4sint)( - 2sint) + (2sint)(2cost) + (6sint)(0)}}\\{\rm{ = 8si}}{{\rm{n}}^{\rm{2}}}{\rm{t + 4sintcost + 0}}\\{\rm{ = 8si}}{{\rm{n}}^{\rm{2}}}{\rm{t + 4sintcost}}\end{array}\)

Create an expression for\(\oint_C F \cdot dr\).

\(\oint_C F \cdot dr = \int_0^{2\pi } {\bf{F}} ({\bf{r}}(t)) \cdot {{\bf{r}}^\prime }(t)dt\)

Putting\({\rm{8si}}{{\rm{n}}^{\rm{2}}}{\rm{t + 4sintcost}}\)for\({\bf{F}}({\bf{r}}(t)) \cdot {{\bf{r}}^\prime }(t)\),

\(\begin{array}{l} = \int_0^{2\pi } {(4(} 1 - \cos 2t) + 2\sin 2t)dt\\ = \left[ {4\left( {t - \frac{{\sin 2t}}{2}} \right) + 2\left( {\frac{{ - \cos 2t}}{2}} \right)} \right)_0^{2\pi }\\\oint_C F \cdot dr = \left( {\begin{array}{*{20}{c}}{\left. {4\left( {2\pi - \frac{{\sin 2(2\pi )}}{2}} \right) + 2\left( {\frac{{ - \cos 2(2\pi )}}{2}} \right) - } \right)}\\{4\left( {0 - \frac{{\sin 2(0)}}{2}} \right) + 2\left( {\frac{{ - \cos 2(0)}}{2}} \right)}\end{array}} \right)\\ = 8\pi - 0 + 2\left( { - \frac{1}{2}} \right) - 0 - 2\left( { - \frac{1}{2}} \right)\\ = 8\pi - 1 + 1\\ = 8\pi \end{array}\)

Using equation, calculate the value of \({\rm{curlF}}\). (2).

\(\begin{array}{c}{\mathop{\rm curl}\nolimits} F = \left( {\frac{{\partial (3x)}}{{\partial y}} - \frac{{\partial (y)}}{{\partial z}}} \right){\bf{i}} - \left( {\frac{{\partial (3x)}}{{\partial x}} - \frac{{\partial ( - 2yz)}}{{\partial z}}} \right){\bf{j}} + \left( {\frac{{\partial (y)}}{{\partial x}} - \frac{{\partial ( - 2yz)}}{{\partial y}}} \right){\bf{k}}\\ = (0 - 0)\;i - (3(1) - ( - 2y(1)))\;j + (0 - ( - 2z(1)))\;k\\ = ( - 3 - 2y){\bf{j}} + 2z{\bf{k}}\end{array}\)

The expression for surface\(S,D = \{ (r,\theta )\mid 0 \le r \le 2,0 \le \theta \le 2\pi \} \)in polar coordinate system is,\({\rm{z = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)

Here,

\({\rm{x = rcos\theta and y = rsin\theta }}\)

As a result, the equation is\({\rm{z = g(x,y)}}\).

The surface S has an upward orientation.

Compare the equations \({\rm{curlF = Pi + Qj + Rk}}\)and \({\rm{curlF = ( - 3 - 2y)j + 2zk}}\).

\(\begin{array}{l}{\rm{P = 0}}\\{\rm{Q = ( - 3 - 2y)}}\\{\rm{R = 2z}}\end{array}\)

Using equation, calculate the value of

Putting \({\rm{rcos\theta }}\) for \({\rm{x,rsin\theta }}\) for y, and \(rdrd\theta \)for\({\rm{dA}}\),

To make the equation easier to understand, simplify it as follows.

\(\begin{array}{l} = \int_0^{2\pi } {\int_0^2 {\left( { - 4{r^3} + 2{r^3}\cos 2\theta + 6{r^2}\cos \theta + 10r} \right)} } drd\theta \\ = \int_0^{2\pi } {\left( { - 4\left( {\frac{{{r^4}}}{4}} \right) + 2\left( {\frac{{{r^4}}}{4}} \right)\cos 2\theta + 6\left( {\frac{{{r^3}}}{3}} \right)\cos \theta + 10\left( {\frac{{{r^2}}}{2}} \right)} \right)_0^2} d\theta \\ = \int_0^{2\pi } {\left( { - {r^4} + \frac{{{r^4}}}{2}\cos 2\theta + 2{r^3}\cos \theta + 5{r^2}} \right)_0^2} d\theta \end{array}\)

Limit values should be used.

Limit values should be used to simplify the equation.

Putting \({\rm{8\pi }}\) for in equation (3),

\(\int_{\rm{C}} {\rm{F}} {\rm{ \times dr = 8\pi }}\)

The value of \(\int_C F \cdot dr\) is the same when Stokes' theorem is used and when it is not used, and Stokes' theorem is verified.

Therefore, the Stokes' theorem for \({\rm{F(x,y,z) = - 2yzi + yj + 3xk}}\) is True.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the functions

(a) \({\bf{f}} \circ {\bf{g}}\)

(b) \({\bf{g}} \circ {\bf{f}}\)

(c) \({\bf{f}} \circ {\bf{f}}\)

(d) \({\bf{g}} \circ {\bf{g}}\)

and their domains.

\({\bf{f}}\left( {\bf{x}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{ - 1}}\) \({\bf{g}}\left( {\bf{x}} \right){\bf{ = 2x + 1}}\)

For the function \(f\) whose graph is shown, arrange the following numbers in increasing order:

\(0\) \(1\) \({f^'}\left( 2 \right)\) \({f^'}\left( 3 \right)\) \({f^'}\left( 5 \right)\) \({f^{''}}\left( 5 \right)\)

The monthly cost of driving a car depends on the number of miles driven. Lynn found that in May it cost her \(380 to drive 480 mi and in June it cost her \)460 to drive 800 mi.

(a) Express the monthly cost\({\bf{C}}\)as a function of the distance driven\(\)assuming that a linear relationship gives a suitable model.

(b) Use part (a) to predict the cost of driving 1500 miles per month.

(c) Draw the graph of the linear function. What does the slope represent?

(d) What does the y-intercept represent?

(e) Why does a linear function give a suitable model in this situation?

Find

(a) \({\bf{f + g}}\)

(b) \({\bf{f}} - {\bf{g}}\)

(c) \({\bf{fg}}\)

(d) \({\bf{f}}/{\bf{g}}\)

and state their domains.

37. \({\bf{f}}\left( x \right) = {x^3} + 2{x^2}\) \(g\left( x \right) = 3{x^2} - 1\)

If \(f\left( x \right) = 3{x^2} - x + 2\), find \(f\left( 2 \right)\), \(f\left( { - 2} \right)\), \(f\left( a \right)\), \(f\left( { - a} \right)\), \(f\left( {a + 1} \right)\), \(2f\left( a \right)\), \(f\left( {2a} \right)\), \(f\left( {{a^2}} \right)\), \({\left( {f\left( a \right)} \right)^2}\), and \(f\left( {a + h} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free