Obtain the value of the function as \(t\)approaches \(0\).
As \(t\) approaches 0, the numerator is:
\(\begin{aligned}{8^t} - {5^t} &= {8^0} - {5^0}\\ &= 1 - 1\\ &= 0\end{aligned}\)
As \(t\) approaches 0, the denominator \(t\) is also \(0\).
Thus, \(\mathop {\lim }\limits_{t \to 0} \frac{{{8^t} - {5^t}}}{t} = \frac{0}{0}\) is in an indeterminate form.
Therefore, apply L'Hospital's Rule and obtain the limit.
\(\lim_{t\rightarrow 0} \frac{{{8^t} - {5^t}}}{t} = \lim_{t\rightarrow 0} \frac{{{8^t}\ln 8 - {5^t}\ln 5}}{1}\)
Substituting the limit in the above expression:
\(\begin{aligned} \lim_{t\rightarrow 0} &= \frac{{{8^0}\ln 8 - {5^0}\ln 5}}{1}\\ &= \frac{{\ln 8 - \ln 5}}{1}\\ &= \ln \left( {\frac{8}{5}} \right) \end{aligned}\)
Thus, the limit function is\(\ln \left( {\frac{8}{5}} \right)\).