Chapter 1: Q 5E (page 33)
For the function gwhose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.
\(\begin{array}{l}(a)\mathop {lim}\limits_{t \to {0^ - }} g(t) (b)\mathop {lim}\limits_{t \to {0^ + }} g(t) (c) \mathop {lim}\limits_{t \to 0} g(t)\\(d)\mathop {lim}\limits_{t \to {2^ - }} g(t) (e)\mathop {lim}\limits_{t \to {2^ + }} g(t) (f) \mathop {lim}\limits_{t \to 2} g(t)\\(g) g(2) (h)\mathop {lim}\limits_{t \to 4} g(t) \end{array}\)
Short Answer
(a)\(\mathop {\lim }\limits_{t \to {0^ - }} g(t) = - 1\)
(b)\(\mathop {\lim }\limits_{t \to {0^ - }} g(t) = - 2\)
(c) The value of \(\mathop {\lim }\limits_{t \to 0} g(t)\)does not exist.
(d) \(\mathop {\lim }\limits_{t \to {2^ - }} g(t) = 2\)
(e)\(\mathop {\lim }\limits_{t \to {2^ + }} g(t) = 0\)
(f)The value of \(\mathop {\lim }\limits_{t \to 2} g(t)\)does not exist.
(g) \(g\left( 2 \right) = 1\)
(h) The value of \(\mathop {\lim }\limits_{t \to 4} g(t)\)is 3.