Consider the following terms,
\[\sum\limits_{n = 1}^\infty {{{( - 1)}^{n - 1}}} n{\left( {\frac{d}{D}} \right)^{n - 1}} = 1 - 2\left( {\frac{d}{D}} \right) + 3{\left( {\frac{d}{D}} \right)^2} - 4{\left( {\frac{d}{D}} \right)^3} + \cdots \]
Substitute the following into the equation\[E\]
\[E = \frac{q}{{{D^2}}}\left( {1 - \frac{1}{{{{\left( {1 + \frac{d}{D}} \right)}^2}}}} \right)\]
\[ \approx \frac{q}{{{D^2}}}\left( {1 - \left[ {1 - 2\left( {\frac{d}{D}} \right) + 3{{\left( {\frac{d}{D}} \right)}^2} - 4{{\left( {\frac{d}{D}} \right)}^3}} \right]} \right)\]
\[ \approx \frac{q}{{{D^2}}}\left( {2\left( {\frac{d}{D}} \right) - 3{{\left( {\frac{d}{D}} \right)}^2} + 4{{\left( {\frac{d}{D}} \right)}^3}} \right)\]
Factor out a \[\frac{d}{D}\]
\[E \approx \frac{{qd}}{{{D^3}}}\left( {2 - 3\left( {\frac{d}{D}} \right) + 4{{\left( {\frac{d}{D}} \right)}^2}} \right)\]
When P is far away from the dipole, D is very large compared to d and\[\frac{d}{D}\] becomes very small.
The equation can be simplified to
\[E \approx \frac{{2qd}}{{{D^3}}}\]
So, E is approximately proportional to 1/D3. When P is far away from the dipole.