Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If 6 J of work is needed to stretch a spring from 10 cm to 12 cm and another 10 J is needed to stretch it from 12 cm to 14 cm, what is the natural length of the spring?

Short Answer

Expert verified

The natural length of the spring is obtained as \({\rm{8cm}}\).

Step by step solution

01

Concept Introduction

In mathematics, an integral is a numerical number equal to the area under a function's graph for some interval or a new function whose derivative equals the original function.

02

Deriving the equations

Let the natural length be \({\rm{l}}\).

Then it can be written –

\(\begin{aligned}{}{\rm{6 = }}\int_{{\rm{10 - l}}}^{{\rm{12 - l}}} {\rm{k}} {\rm{xdx}}\\{\rm{6 = }}\left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{k}}{{\rm{x}}^{\rm{2}}}} \right)_{{\rm{10 - l}}}^{{\rm{12 - l}}}\\{\rm{6 = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{k}}\left( {{{{\rm{(12 - l)}}}^{\rm{2}}}{\rm{ - (10 - l}}{{\rm{)}}^{\rm{2}}}} \right){\rm{ Equation 1}}\end{aligned}\)

And also, it can further be written –

\(\begin{aligned}{}{\rm{10 = }}\int_{{\rm{12 - l}}}^{{\rm{14 - l}}} {\rm{k}} {\rm{xdx}}\\{\rm{10 = }}\left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{k}}{{\rm{x}}^{\rm{2}}}} \right)_{{\rm{12 - l}}}^{{\rm{14 - l}}}\\{\rm{10 = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{k}}\left( {{{{\rm{(14 - l)}}}^{\rm{2}}}{\rm{ - (12 - l}}{{\rm{)}}^{\rm{2}}}} \right){\rm{ Equation 2}}\end{aligned}\)

03

Calculation for work done

Divide Equation \({\rm{2}}\) by Equation \({\rm{1}}\) -

\(\begin{aligned}{}\frac{{{\rm{10}}}}{{\rm{6}}}{\rm{ = }}\frac{{{{{\rm{(14 - l)}}}^{\rm{2}}}{\rm{ - (12 - l}}{{\rm{)}}^{\rm{2}}}}}{{{{{\rm{(12 - l)}}}^{\rm{2}}}{\rm{ - (10 - l}}{{\rm{)}}^{\rm{2}}}}}\\\frac{{\rm{5}}}{{\rm{3}}}{\rm{ = }}\frac{{{\rm{(14 - l - 12 + l)(14 - l + 12 - l)}}}}{{{\rm{(12 - l - 10 + l)(12 - l + 10 - l)}}}}.......({{\rm{a}}^{\rm{2}}}{\rm{ - }}{{\rm{b}}^{\rm{2}}}{\rm{ = (a - b)(a + b)}})\\\frac{{\rm{5}}}{{\rm{3}}}{\rm{ = }}\frac{{{\rm{(2)(26 - 2l)}}}}{{{\rm{(2)(22 - 2l)}}}}\\\frac{{\rm{5}}}{{\rm{3}}}{\rm{ = }}\frac{{{\rm{13 - l}}}}{{{\rm{11 - l}}}}\end{aligned}\)

Cross Multiplying –

\({\rm{55 - 5l = 39 - 3l}}\)

Add \({\rm{5l}}\) on both the sides –

\({\rm{55 = 39 + 2l}}\)

Subtract \({\rm{39}}\) from both the sides –

\({\rm{16 = 2l}}\)

Divide both the sides by \({\rm{2}}\)–

\({\rm{8 = l}}\)

Therefore, the length is obtained as \({\rm{8cm}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free