Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

a) Draw the region \(R\).

b) Find the coordinates of the centroid of region \(R\).

c) Find the values of \(m\) and \(n\) such that the centroid lies outside R.

Short Answer

Expert verified

a)For \(0 < x < 1\), the one with the greater exponent will be below the other.

b) The coordinates of the centroid \((\bar x,\bar y)\) of the region \(R\)is\(\left( {\frac{{(n + 1)(m + 1)}}{{(n + 2)(m + 2)}},\frac{{(n + 1)(m + 1)}}{{(2n + 1)(2m + 1)}}} \right)\).

c) The values of \(m\) and \(n\) is \(\left( {\frac{2}{3},\frac{{20}}{{63}}} \right)\).

Step by step solution

01

Calculate the equations.

(a)

The equations are \(y = {x^m},y = {x^n}\)

The region lies between 0 to 1.

The values \(m\) and \(n\) are integers.

\(\begin{aligned}{}y = {x^m} - - - - - eq(1)\\y = {x^n} - - - - - eq(2)\end{aligned}\)

02

Plot a graph for the equations \(y = {x^m}\) and \(y = {x^n}\) to find the value of \(x\)and\(y\).

Consider \(m = 1\) and \(n = 1\).

Calculate value of y using Equation (1)

Substitute 0 for \(x\) and 1 for \(m\) in Equation (1).

\(\begin{aligned}{}y = {0^1}\\y = 0\end{aligned}\)

The co-ordinate of is \((0,0)\).

Calculate \(x\) value using Equation (2).

Substitute 1 for \(x\) and 1 for \(n\) in Equation (2).

\(\begin{aligned}{}y = {1^1}\\y = 1\end{aligned}\)

the co-ordinate of (x, y) is \((1,1)\).

Similarly calculate the coordinate values up to bound the region in the graph.

Draw the region as shown in Figure 1.

03

Calculate the area of region R.

(b) Formula used

\(A = \int_0^1 {\left| {{x^n} - {x^m}} \right|} dx = \int_0^1 {\left( {{x^n} - {x^m}} \right)} dx\)

\( = \left( {\frac{{{x^{n + 1}}}}{{n + 1}} - \frac{{{x^{m + 1}}}}{{m + 1}}} \right)_0^1\)

\( = \frac{{m - n}}{{(m + 1)(n + 1)}}\)

04

Find the coordinates of the centroid of \(R\).

\(\begin{aligned}\bar x &= \frac{1}{A}\int_0^1 x \left( {{x^n} - {x^m}} \right)dx\\\bar x &= \frac{1}{A}\left( {\frac{{{x^{n + 2}}}}{{n + 2}} - \frac{{{x^{m + 2}}}}{{m + 2}}} \right)_0^1\\\bar x &= \frac{1}{A}\frac{{m - n}}{{(m + 2)(n + 2)}}\\\bar x &= \frac{{(n + 1)(m + 1)}}{{(n + 2)(m + 2)}}\end{aligned}\)

05

Find the coordinates of the centroid of \(R\).

\(\begin{aligned}\bar y &= \frac{1}{A}\int_0^1 {\frac{1}{2}} \left( {{x^{2n}} - {x^{2m}}} \right)dx\\ &= \frac{1}{{2A}}\left( {\frac{{{x^{2n + 1}}}}{{2n + 1}} - \frac{{{x^{2m + 1}}}}{{2m + 1}}} \right)_0^1\\ &= \frac{1}{{2A}}\frac{{2m - 2n}}{{(2n + 1)(2m + 1)}}\\ &= \frac{{(n + 1)(m + 1)}}{{(2n + 1)(2m + 1)}}\end{aligned}\)

Hence, \((\bar x,\bar y) = \left( {\frac{{(n + 1)(m + 1)}}{{(n + 2)(m + 2)}},\frac{{(n + 1)(m + 1)}}{{(2n + 1)(2m + 1)}}} \right)\)

06

Calculate the values of \(m\) and \(n\) such that the centroid \((\bar x,\bar y)\) lies outside\(R\)

(c)

Consider \(m = 4\) and \(n = 3\).

\((\bar x,\bar y) = \left( {\frac{{(m + 1)(n + 1)}}{{(m + 2)(n + 2)}},\frac{{(m + 1)(n + 1)}}{{(2m + 1)(2n + 1)}}} \right)\)

Substitute 4 for \(m\) and 3 for \(n\).

\(\begin{aligned}(\bar x,\bar y) &= \left\{{\frac{{(4 + 1)(3 + 1)}}{{(4 + 2)(3 + 2)}},\frac{{(4 + 1)(3 + 1)}}{{|2(4) + 1|(2(3) + 1\mid }}} \right\}\\(\bar x,\bar y) &= \left( {\left( {\frac{{5 \times 4}}{{6 \times 5}}} \right),\left( {\frac{{5 \times 4}}{{9 \times 7}}} \right)} \right)\\(\bar x,\bar y) &= \left( {\frac{2}{3},\frac{{20}}{{63}}} \right)\end{aligned}\)

Hence, the values of \(m\) and \(n\) such that the centroid lies outside \(R\) is \(\left( {\frac{2}{3},\frac{{20}}{{63}}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free