Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To find: The centroid \((\bar x,\bar y)\) of the region bounded by the given curve: \(y = 2 - {x^2}\), \(y = x\).

Short Answer

Expert verified

.

Step by step solution

01

The concept used to find the centroid of the region bounded by curve

The centroid of a plane region is the centre point of the region over the interval [a, b]. In order to calculate the coordinates of the centroid, we'll need to calculate the area of the region first.

02

Plot the graph for the given equations using the calculation as follows

Show the equations as below:

\(y = 2 - {x^2}\) …… (1)

\(y = x\) …… (2)

Calculate \(y\) value using Equation (1)

Substitute 0 for \(x\) in Equation (1).

\(\begin{array}{}y = 2 - {0^2}\\ = 2\end{array}\)

Hence the co-ordinate of (x, y) is\((0,2)\).

Calculate \(y\) value using Equation (1)

Substitute 1 for \(x\) in Equation (1).

\(\begin{array}{}y = 2 - {1^2}\\ = 1\end{array}\)

Hence the co-ordinate of (x, y) is\((1,1)\).

Calculate \(y\) value using Equation (2)

Substitute 0 for \(x\) in Equation (2).

\(y = 0\)

The co-ordinate of (x, y) is\((0,0)\).

Calculate \(y\) value using Equation (2).

Substitute 1 for \(x\) in Equation (2).

\(y = 1\)

The co-ordinate of (x, y) is\((1,1)\).

Similarly calculate the coordinate values up to bound the region in the graph.

Draw the region as in Figure 1.

03

Calculate the area of the region bounded by the given curve

…… (3)

Calculate the \(x\) values:

Substitute \(x\) for \(y\) in Equation (1)

\[\begin{array}{}x = 2 - {x^2}\\{x^2} + x - 2 = 0\\{x^2} - x + 2x - 2 = 0\\x(x - 1) + 2(x - 1) = 0\\(x - 1)(x + 2) = 0\\{x_1} = 1\\{x_2} = - 2\end{array}\]

Substitute \(( - 2)\) for a, \(1\) for b, \(2 - {x^2}\) for\([f(x)]\), and \(x\) for \([g(x)]\) in Equation (3).

\(\begin{array}{}A = \int_{ - 2}^1 {\left( {2 - {x^2} - x} \right)} dx\\ = \int_{ - 2}^1 {\left( { - {x^2} - x + 2} \right)} dx\end{array}\) …… (4)

Integrate equation (4)

\(\begin{array}{}A = \left[ { - \frac{{{x^{2 + 1}}}}{{2 + 1}} - \frac{{{x^{1 + 1}}}}{{1 + 1}} + 2x} \right]_{ - 2}^1\\ = \left[ { - \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 2x} \right]_{ - 2}^1\\ = \left[ { - \frac{1}{3}{{(1)}^3} - \frac{1}{2}{{(1)}^2} + 2(1)} \right] - \left[ { - \frac{1}{3}{{( - 2)}^3} - \frac{1}{2}{{( - 2)}^2} + 2( - 2)} \right]\\ = \left[ {\left( {\frac{{ - 1}}{3} - \frac{1}{2} + 2} \right) - \left( {\frac{8}{3} - 2 - 4} \right)} \right]\\ = \frac{7}{6} - \left( {\frac{{ - 10}}{3}} \right)\\ = \frac{{27}}{6}\\ = \frac{9}{2}\end{array}\)

04

Calculate the \((\bar x)\) coordinate of centroid

For calculating the \((\bar x)\) coordinate of centroid:

\(\bar x = \frac{1}{A}\int_a^b x [f(x) - g(x)]dx\) …… (5)

Substitute (-2) for a, 1 forb, \(\frac{9}{2}\) for A, \(2 - {x^2}\) for\([f(x)]\), and \(x\) for \([g(x)]\) in Equation (5).

\(\begin{array}{}\bar x = \frac{1}{{\frac{9}{2}}}\int_{ - 2}^1 x \left( {2 - {x^2} - x} \right)dx\\ = \frac{2}{9}\int_{ - 2}^1 x \left( { - {x^2} - x + 2} \right)dx\\ = \frac{2}{9}\int_{ - 2}^1 {\left( { - {x^3} - {x^2} + 2x} \right)} dx\end{array}\) …… (6)

Integrate Equation (6).

\(\bar x = \frac{2}{9}\left[ { - \frac{{{x^{3 + 1}}}}{{3 + 1}} - \frac{{{x^{2 + 1}}}}{{2 + 1}} + \frac{{2{x^{1 + 1}}}}{{1 + 1}}} \right]_{ - 2}^1\)

\( = \frac{2}{9}\left[ { - \frac{1}{4}{x^4} - \frac{1}{3}{x^3} + \frac{2}{2}{x^2}} \right]_0^1\)

\( = \frac{2}{9}\left\{ {\left[ { - \frac{1}{4}{{(1)}^4} - \frac{1}{3}{{(1)}^3} + {{(1)}^2}} \right] - \left[ { - \frac{1}{4}{{( - 2)}^4} - \frac{1}{3}{{( - 2)}^3} + {{( - 2)}^2}} \right]} \right\}\)

\( = \frac{2}{9}\left[ {\left( { - \frac{1}{4} - \frac{1}{3} + 1} \right) - \left( { - \frac{{16}}{4} + \frac{8}{3} + 4} \right)} \right]\)

\( = \frac{2}{9}\left( {\frac{5}{{12}} - \frac{8}{3}} \right)\)

\( = \frac{2}{9}\left( { - \frac{9}{4}} \right)\)

\( = - \frac{1}{2}\)

05

Calculate the \((\bar y)\) coordinate of centroid

For calculating the \((\bar y)\) coordinate of centroid:

\(\bar y = \frac{1}{A}\int_a^b {\frac{1}{2}} \left\{ {{{[f(x)]}^2} - {{[g(x)]}^2}} \right\}dx\) …… (7)

Substitute \(( - 2)\) for a, 1 for b, \(\frac{9}{2}\) for A, \(2 - {x^2}\) for\([f(x)]\), and \(x\) for \([g(x)]\) in Equation (7).

\(\begin{array}{}\bar y = \frac{1}{{\frac{9}{2}}}\int_{ - 2}^1 {\frac{1}{2}} \left[ {{{\left( {2 - {x^2}} \right)}^2} - {x^2}} \right]dx\\ = \frac{2}{9} \times \frac{1}{2}\int_{ - 2}^1 {\left( {4 - 4{x^2} + {x^4} - {x^2}} \right)} dx\\ = \frac{1}{9}\int_{ - 2}^1 {\left( {{x^4} - 5{x^2} + 4} \right)} dx\end{array}\) …… (8)

Integrate equation (8)

\(\bar y = \frac{1}{9}\left[ {\frac{{{x^{4 + 1}}}}{{4 + 1}} - \frac{{5{x^{2 + 1}}}}{{2 + 1}} + 4x} \right]_{ - 2}^1\)

\( = \frac{1}{9}\left[ {\frac{1}{5}{x^5} - \frac{5}{3}{x^3} + 4x} \right]_{ - 2}^1\)

\( = \frac{1}{9}\left\{ {\left[ {\frac{1}{5}{{(1)}^5} - \frac{5}{3}{{(1)}^3} + 4(1)} \right] - \left[ {\frac{1}{5}{{( - 2)}^5} - \frac{5}{3}{{( - 2)}^3} + 4( - 2)} \right]} \right\}\)

\( = \frac{1}{9}\left[ {\left( {\frac{1}{5} - \frac{5}{3} + 4} \right) - \left( { - \frac{{32}}{5} + \frac{{40}}{3} - 8} \right)} \right]\)

\( = \frac{1}{9}\left( {\frac{{38}}{{15}} - \frac{{ - 16}}{{15}}} \right)\)

\( = \frac{1}{9}\left( {\frac{{18}}{5}} \right)\)

\( = \frac{2}{5}\)

Hence, the centroid \((\bar x,\bar y)\) of the region bounded by the given curve is\(\left( { - \frac{1}{2},\frac{2}{5}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free