Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The region bounded by the given curves is rotated about the specified axis. Find the volume of the resulting solid by any method.

\({{\rm{y}}^{\rm{2}}}{\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{ = 1,y = 2;}}\)about the \({\rm{y}}\)axis.

Short Answer

Expert verified

The volume of the curve is \({\rm{V = }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{\pi }}\).

Step by step solution

01

Curve.

The region of the curve

\(\begin{aligned}{}{{\rm{y}}^{\rm{2}}}{\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{ = 1 \ldots \ldots \ldots \ldots \ldots \ldots (1)}}\\{\rm{y = 2}}\end{aligned}\)

No need to consider the lower part of the hyperbola because of no intersection only

\({\rm{y = 2}}\).

02

Volume of the curve line.

From the graph \({\rm{r = x}}\), in equation \({\rm{(1)}}\)get \({\rm{x = \pm }}\sqrt {{{\rm{y}}^{\rm{2}}}{\rm{ - 1}}} \).

So, the radius is \({\rm{r = }}\sqrt {{{\rm{y}}^{\rm{2}}}{\rm{ - 1}}} \)

Therefore, the area \({\rm{A(y) = \pi }}{{\rm{r}}^{\rm{2}}}{\rm{ = \pi }}\left( {{{\rm{y}}^{\rm{2}}}{\rm{ - 1}}} \right)\).

Then the Volume is,

\(\begin{aligned}{}{\rm{V = }}\int_{\rm{1}}^{\rm{2}} {\rm{A}} {\rm{(y)dy}}\\{\rm{ = }}\int_{\rm{1}}^{\rm{2}} {\rm{\pi }} \left( {{{\rm{y}}^{\rm{2}}}{\rm{ - 1}}} \right){\rm{dy}}\\{\rm{ = \pi }}\int_{\rm{1}}^{\rm{2}} {\left( {{{\rm{y}}^{\rm{2}}}{\rm{ - 1}}} \right)} {\rm{dy}}\\\left. {{\rm{ = \pi }}\left( {\frac{{\rm{1}}}{{\rm{3}}}{{\rm{y}}^{\rm{3}}}{\rm{ - y}}} \right)} \right)_{\rm{1}}^{\rm{2}}\\{\rm{ = \pi }}\left( {\frac{{\rm{1}}}{{\rm{3}}}{{\rm{2}}^{\rm{3}}}{\rm{ - 2 - }}\left( {\frac{{\rm{1}}}{{\rm{3}}}{{\rm{1}}^{\rm{3}}}{\rm{ - 1}}} \right)} \right)\\{\rm{ = \pi }}\left( {\frac{{\rm{8}}}{{\rm{3}}}{\rm{ - 2 - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{ + 1}}} \right)\\{\rm{ = }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{\pi }}\end{aligned}\)

Therefore, the volume of the curve is \({\rm{V = }}\frac{{\rm{4}}}{{\rm{3}}}{\rm{\pi }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free