Calculate the pressure of the \({i^{th}}\) rectangular strip \(\left( {{{\rm{P}}_{\rm{i}}}} \right)\) as follows:
\({{\rm{P}}_{\rm{i}}} = {\rm{\gamma }}{{\rm{d}}_i}\)… (3)
Here, the unit weight of water is\({\rm{\gamma }}\)and depth of strip is\({{\rm{d}}_{\rm{i}}}\).
Let the unit weight of water is\({\rm{\gamma }} = {\rm{62}}{\rm{.5lb/f}}{{\rm{t}}^{\rm{3}}}\)
Substitute\({\rm{62}}{\rm{.5 lb/f}}{{\rm{t}}^{\rm{3}}}\)for \({\rm{\gamma }}\)and \({\rm{4 - }}{{\rm{y}}_{\rm{i}}}^{\rm{*}}\)for \({\rm{i}}\)Equation (3).
The expression to find the hydrostatic force on one end of the trough is shown below:
Here, the lower limit is\({\rm{a}}\)and the upper limit is\({\rm{b}}\)
Substitute\({\rm{0}}\)for \({\rm{a}}\), \({\rm{4ft}}\) for \({\rm{b}}\), \({\rm{62}}{\rm{.5(4 - y)}}\) for \({{\rm{P}}_{\rm{i}}}\), and \({\rm{2(2}}\sqrt {\rm{y}} {\rm{)dy}}\)for \({\rm{A}}{}_{\rm{i}}\)in equation (4).
\(\begin{aligned}{\rm{F}} = \int\limits_{\rm{0}}^{\rm{4}} {{\rm{62}}{\rm{.5}}\left( {{\rm{4 - y}}} \right){\rm{2}}\left( {{\rm{2}}\sqrt {\rm{y}} } \right){\rm{dy}}} \\ = {\rm{4}}\left( {{\rm{62}}{\rm{.5}}} \right)\int\limits_{\rm{0}}^{\rm{4}} {\left( {{\rm{4 - y}}} \right)} \sqrt {\rm{y}} {\rm{dy}}\\ = {\rm{250}}\int\limits_{\rm{0}}^{\rm{4}} {\left( {{\rm{4}}{{\rm{y}}^{\frac{{\rm{1}}}{{\rm{2}}}}}{\rm{ - }}{{\rm{y}}^{\frac{{\rm{3}}}{{\rm{2}}}}}} \right)} {\rm{dy}}\;\;\;\;\;\;\;\;\;\;\;\;...\left( 5 \right)\end{aligned}\)
Integrate Equation (5) and apply the limits.
\(\begin{aligned}{\rm{F}} = {\rm{250}}\left( {{\rm{4}}\frac{{{{\rm{y}}^{\frac{{\rm{3}}}{{\rm{2}}}}}}}{{\frac{{\rm{3}}}{{\rm{2}}}}}{\rm{ - }}\frac{{{{\rm{y}}^{\frac{{\rm{5}}}{{\rm{2}}}}}}}{{\frac{{\rm{5}}}{{\rm{2}}}}}} \right)_{\rm{0}}^{\rm{4}}\\ = {\rm{250}}\left( {\frac{{\rm{8}}}{{\rm{3}}}{{\rm{y}}^{\frac{{\rm{3}}}{{\rm{2}}}}}{\rm{ - }}\frac{{\rm{2}}}{{\rm{5}}}{{\rm{y}}^{\frac{{\rm{5}}}{{\rm{2}}}}}} \right)_{\rm{0}}^{\rm{4}}\\ = {\rm{250}}\left( {\left( {\frac{{\rm{8}}}{{\rm{3}}}{{\left( {\rm{4}} \right)}^{\frac{{\rm{3}}}{{\rm{2}}}}}{\rm{ - }}\frac{{\rm{2}}}{{\rm{5}}}{{\left( {\rm{4}} \right)}^{\frac{{\rm{5}}}{{\rm{2}}}}}} \right){\rm{ - }}\left( {\rm{0}} \right)} \right)\\ = {\rm{250}}\left( {\frac{{{\rm{64}}}}{{\rm{3}}}{\rm{ - }}\frac{{{\rm{64}}}}{{\rm{5}}}} \right)\\ = {\rm{2,133}}{\rm{.33 lb}}\end{aligned}\)
Hence, the hydrostatic force on one end of the trough is \({\rm{2,133}}{\rm{.33 lb}}\)