To solve for X, such that equations for the left and right parts of the parabola may be written
\({\rm{y = - }}{{\rm{x}}^{\rm{2}}}{\rm{ + 6x - 8}}\)
Subtract \({\rm{1}}\) from both sides of the equation.
\({\rm{y - 1 = - }}{{\rm{x}}^{\rm{2}}}{\rm{ + 6x - 9}}\)
Multiply all sides \({\rm{ - 1}}\).
\(\begin{aligned}{}{\rm{1 - y = }}{{\rm{x}}^{\rm{2}}}{\rm{ - 6x + 9}}\\{\rm{1 - y = (x - 3}}{{\rm{)}}^{\rm{2}}}\end{aligned}\)
Take the square root of,
\({\rm{ \pm }}\sqrt {{\rm{1 - y}}} {\rm{ = x - 3}}\)
Add \({\rm{3}}\),
\({\rm{3 \pm }}\sqrt {{\rm{1 - y}}} {\rm{ = x}}\)
Parabola left side\({\rm{3 - }}\sqrt {{\rm{1 - y}}} \)
Parabola right side\({\rm{3 + }}\sqrt {{\rm{1 - y}}} \)
So, the height is \({\rm{Height = (3 + }}\sqrt {{\rm{1 - y}}} {\rm{) - (3 - }}\sqrt {{\rm{1 - y}}} {\rm{) = 2}}\sqrt {{\rm{1 - y}}} \)