As prey dropped from\(180m\), i.e., \(x = 0\)
To find \(x\) for \(y = 0\), substitute \(y = 0\) in given equation
\(\begin{aligned}0 &= 180 - \frac{{{x^2}}}{{45}}\\\frac{{{x^2}}}{{45}} &= 180\\{x^2} &= 8100\\x &= \sqrt {8100} \\ &= 90\end{aligned}\)
Therefore, distance traveled by prey is the arc length from \(x = 0{\rm{ }}to{\rm{ }}90\).
As \(y = 180 - \frac{{{x^2}}}{{45}}\)
\(\frac{{dy}}{{dx}} = - \frac{2}{{45}}x\)
Compute arc length by formula \(L = \int_a^b {\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} } dx\)
\(L = \int_0^{90} {\sqrt {1 + \frac{{{2^2}}}{{{{45}^2}}}{x^2}} } dx\)
Let \(x = \frac{{45}}{2}\tan t\;\;\; \to \;\;\;dx = \frac{{45}}{2}{\sec ^2}t{\rm{ }}dt\)
\(\begin{aligned}L &= \int_a^b {\sqrt {1 + \frac{{{2^2}}}{{{{45}^2}}}{{\left( {\frac{{45}}{2}\tan t} \right)}^2}} } \frac{{45}}{2}{\rm{ }}{\sec ^2}t{\rm{ }}dt\\ &= \frac{{45}}{2}\int_a^b {\sqrt {1 + \frac{{{2^2}}}{{{{45}^2}}}\left( {\frac{{{{45}^2}}}{{{2^2}}}{{\tan }^2}t} \right)} } {\sec ^2}t{\rm{ }}dt\\ &= \frac{{45}}{2}\int_a^b {\sqrt {1 + {{\tan }^2}t} } {\rm{ }}{\sec ^2}t{\rm{ }}dt\\ &= \frac{{45}}{2}\int_a^b {\sqrt {{{\sec }^2}t} } {\rm{ }}{\sec ^2}t{\rm{ }}dt\\ &= \frac{{45}}{2}\int_a^b {\sec {\rm{ }}} t{\rm{ }}{\sec ^2}t{\rm{ }}dt\\ &= \frac{{45}}{2}\int_a^b {{{\sec }^3}} t{\rm{ }}dt{\rm{ }}\_\_\_E{q^n}{\rm{ }}1\end{aligned}\)
Let \(I = \int_a^b {{{\sec }^3}} t{\rm{ }}dt\)
Integrating by parts,
\(\begin{aligned}u &= \sec t\\du &= \sec t \cdot \tan t{\rm{ }}dt\\and{\rm{ }}\\dv &= {\sec ^2}t{\rm{ }}dt\\v &= \tan t\end{aligned}\)
\(\begin{aligned}I &= \int_a^b {{{\sec }^3}} tdt\\I &= uv - \int v du\\I &= \sec t\tan t - \int {\tan } t\sec t\tan tdt\\I &= \sec t\tan t - \int {{{\tan }^2}} t\sec tdt\\I &= \sec t\tan t - \int {\left( {{{\sec }^2}t - 1} \right)} \sec tdt\\I &= \sec t\tan t - \int {{{\sec }^3}} tdt + \int {\sec } tdt{\rm{ }}\_\_\_E{q^n}{\rm{ }}2\end{aligned}\)
Equation 2 can be written as:
\(\begin{aligned}2I &= \sec t\tan t + \int {\sec } tdt\\I &= \frac{1}{2}\sec t\tan t + \frac{1}{2}\ln |\sec t + \tan t|\end{aligned}\)
Substitute value of I in equation 1,
\(L = \frac{{45}}{2}\left( {\frac{1}{2}\sec t\tan t + \frac{1}{2}\ln |\sec t + \tan t|} \right)_a^b\)