In the last exercise, we discovered a formula that was:
\(S = \int_a^b 2 \pi [c - f(x)]\sqrt {1 + {{\left[ {{f^\prime }(x)} \right]}^2}} dx\)
In this case a=0,b=4,c=4 and f(x) = \(\sqrt 2 \)
\(\begin{aligned}S &= \int_a^b 2 \pi [c - f(x)]\sqrt {1 + {{\left[ {{f^\prime }(x)} \right]}^2}} dx\\S &= \int_0^4 2 \pi (4 - \sqrt x )\sqrt {1 + {{\left[ {\frac{{d(\sqrt x )}}{{dx}}} \right]}^2}} dx\\ &= \int_0^4 2 \pi (4 - \sqrt x )\sqrt {1 + {{\left[ {\frac{1}{{2\sqrt x }}} \right]}^2}} dx\\ &= \int_0^4 2 \pi (4 - \sqrt x )\sqrt {1 + \frac{1}{{4x}}} dx\end{aligned}\)
To solve this on wolfram alpha (which can be used as CAS), consider the following text: integrate \(2\backslash pi(4 - \sqrt x )\sqrt {1 + \frac{1}{{4x}}} \) on [0, 4]
The result of wolfram alpha’s work will be 80.6095.